GeneralMPLaw {RMT4DS} | R Documentation |
General Marchenko-Pastur Distribution
Description
Density, distribution function, quantile function and random generation for the general Marchenko-Pastur distribution, the limiting distribution of empirical spectral measure for large Wishart matrices.
Usage
qgmp(p, ndf=NULL, pdim=NULL, svr=ndf/pdim, eigens=NULL, lower.tail=TRUE,
log.p=FALSE, m=500)
rgmp(n, ndf=NULL, pdim=NULL, svr=ndf/pdim, eigens=NULL, m=500)
pgmp(q, ndf=NULL, pdim=NULL, svr=ndf/pdim, eigens=NULL, lower.tail=TRUE,
log.p=FALSE, m=500)
dgmp(x, ndf=NULL, pdim=NULL, svr=ndf/pdim, eigens=NULL, log.p=FALSE, m=500)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observation. |
m |
number of points used in estimating density. |
ndf |
the number of degrees of freedom for the Wishart matrix. |
pdim |
the number of dimensions (variables) for the Wishart matrix. |
svr |
samples to variables ratio; the number of degrees of freedom per dimension. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
eigens |
input eigenvalues of population covariance matrix. |
Details
Those functions work only for non-spiked part.
To achieve high accuracy of estimation, eigens
should be large, like
larger than 500.
In general Marchenko Pastur distributions, the support of density is the union of one or more intervals.
Value
dgmp
gives the density,
pgmp
gives the distribution function,
qgmp
gives the quantile function,
rgmp
generates random deviates,
Author(s)
Xiucai Ding, Yichen Hu
Source
If eigens
is missing, functions from package
RMTstat
will be used to compute classical Marchenko-Pastur
distribution.
References
[1] Knowles, A., & Yin, J. (2017). Anisotropic local laws for random matrices. Probability Theory and Related Fields, 169(1), 257-352.
[2] Bai, Z., & Yao, J. (2012). On sample eigenvalues in a generalized spiked population model. Journal of Multivariate Analysis, 106, 167-177.
[3] Ding, X. (2021). Spiked sample covariance matrices with possibly multiple bulk components. Random Matrices: Theory and Applications, 10(01), 2150014.
[4] Ding, X., & Trogdon, T. (2021). A Riemann–Hilbert approach to the perturbation theory for orthogonal polynomials: Applications to numerical linear algebra and random matrix theory. arXiv preprint arXiv:2112.12354.
Examples
N = 1000
M = 300
d = c(rep(3.8,M/3),rep(1.25,M/3),rep(0.25,M/3))
qgmp(0.5, ndf=N, pdim=M, eigens=d)
pgmp(3, ndf=N, pdim=M, eigens=d)
dgmp(2, ndf=N, pdim=M, eigens=d)
rgmp(2, ndf=N, pdim=M, eigens=d)