| CovEst {RMT4DS} | R Documentation |
Estimation of the Spectrum of Population Covariance Matrix
Description
Estimation of the eigenvalues of population covariance matrix given samples.
Usage
MPEst(X, n=nrow(X), k=1, num=NULL, penalty=FALSE, n_spike=0)
MomentEst(X, n=nrow(X), k=1, n_spike=0)
Arguments
X |
n by p data matrix. |
n |
sample size. |
k |
repeated times in estimation. If |
num |
numbers of mass points chosen in estimation. |
penalty |
whether to implement L-1 penalty in inverting Marchenko-Pastur law |
n_spike |
number of spikes in population spectral. |
Details
Given E(X)=0 and Cov(X)=\Sigma with \Sigma unknown and fourth moment of X exists, we want to estimate spectrum of \Sigma from sample covariance matrix X'X/n.
MPEst estimates spectrum by inverting Marchenko-Pastur law while MomentEst estimates spectrum
by estimating the moment of population spectral density.
Those two functions give estimates of the eigenvalues by d and estimates of spectral density by xs and cdf.
Value
MPEst and MomentEst give estimation of the spectrum of population covariance matrix and corresponding spectral density.
Author(s)
Xiucai Ding, Yichen Hu
References
[1] El Karoui, N. (2008). Spectrum estimation for large dimensional covariance matrices using random matrix theory. The Annals of Statistics, 36(6), 2757-2790.
[2] Kong, W., & Valiant, G. (2017). Spectrum estimation from samples. The Annals of Statistics, 45(5), 2218-2247.
Examples
require(MASS)
n = 500
p = 250
X = mvrnorm(n, rep(0,p), diag(c(rep(2,p/2),rep(1,p/2))))
MPEst(X, n)$d
MomentEst(X, n)$d