CovEst {RMT4DS} | R Documentation |
Estimation of the Spectrum of Population Covariance Matrix
Description
Estimation of the eigenvalues of population covariance matrix given samples.
Usage
MPEst(X, n=nrow(X), k=1, num=NULL, penalty=FALSE, n_spike=0)
MomentEst(X, n=nrow(X), k=1, n_spike=0)
Arguments
X |
n by p data matrix. |
n |
sample size. |
k |
repeated times in estimation. If |
num |
numbers of mass points chosen in estimation. |
penalty |
whether to implement L-1 penalty in inverting Marchenko-Pastur law |
n_spike |
number of spikes in population spectral. |
Details
Given E(X)=0
and Cov(X)=\Sigma
with \Sigma
unknown and fourth moment of X exists, we want to estimate spectrum of \Sigma
from sample covariance matrix X'X/n
.
MPEst
estimates spectrum by inverting Marchenko-Pastur law while MomentEst
estimates spectrum
by estimating the moment of population spectral density.
Those two functions give estimates of the eigenvalues by d
and estimates of spectral density by xs
and cdf
.
Value
MPEst
and MomentEst
give estimation of the spectrum of population covariance matrix and corresponding spectral density.
Author(s)
Xiucai Ding, Yichen Hu
References
[1] El Karoui, N. (2008). Spectrum estimation for large dimensional covariance matrices using random matrix theory. The Annals of Statistics, 36(6), 2757-2790.
[2] Kong, W., & Valiant, G. (2017). Spectrum estimation from samples. The Annals of Statistics, 45(5), 2218-2247.
Examples
require(MASS)
n = 500
p = 250
X = mvrnorm(n, rep(0,p), diag(c(rep(2,p/2),rep(1,p/2))))
MPEst(X, n)$d
MomentEst(X, n)$d