predict.cv.RMSS {RMSS} | R Documentation |
Predictions for cv.RMSS Object
Description
predict.cv.RMSS
returns the predictions for a cv.RMSS object.
Usage
## S3 method for class 'cv.RMSS'
predict(
object,
newx,
h_ind = NULL,
t_ind = NULL,
u_ind = NULL,
group_index = NULL,
dynamic = FALSE,
...
)
Arguments
object |
An object of class cv.RMSS. |
newx |
New data for predictions. |
h_ind |
Index for robustness parameter. |
t_ind |
Index for sparsity parameter. |
u_ind |
Index for diversity parameter. |
group_index |
Groups included in the ensemble. Default setting includes all the groups. |
dynamic |
Argument to determine whether dynamic predictions are used based on deviating cells. Default is FALSE. |
... |
Additional arguments for compatibility. |
Value
The predictions for the cv.RMSS object.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
Examples
# Simulation parameters
n <- 50
p <- 100
rho <- 0.8
rho.inactive <- 0.2
group.size <- 5
p.active <- 15
snr <- 2
contamination.prop <- 0.3
# Setting the seed
set.seed(0)
# Block Correlation
sigma.mat <- matrix(0, p, p)
sigma.mat[1:p.active, 1:p.active] <- rho.inactive
for(group in 0:(p.active/group.size - 1))
sigma.mat[(group*group.size+1):(group*group.size+group.size),
(group*group.size+1):(group*group.size+group.size)] <- rho
diag(sigma.mat) <- 1
# Simulation of beta vector
true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7),
rep(0, p - p.active))
# Setting the SD of the variance
sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
# Simulation of test data
m <- 2e3
x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)
# Simulation of uncontaminated data
x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
y <- x %*% true.beta + rnorm(n, 0, sigma)
# Contamination of data
contamination_indices <- 1:floor(n*contamination.prop)
k_lev <- 2
k_slo <- 100
x_train <- x
y_train <- y
beta_cont <- true.beta
beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
for(cont_id in contamination_indices){
a <- runif(p, min = -1, max = 1)
a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + k_lev * a /
as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
}
# CV RMSS
rmss_fit <- cv.RMSS(x = x_train, y = y_train,
n_models = 3,
h_grid = c(35), t_grid = c(6, 8, 10), u_grid = c(1:3),
initial_estimator = "robStepSplitReg",
tolerance = 1e-1,
max_iter = 1e3,
neighborhood_search = FALSE,
neighborhood_search_tolerance = 1e-1,
n_folds = 5,
alpha = 1/4,
gamma = 1,
n_threads = 1)
rmss_coefs <- coef(rmss_fit,
h_ind = rmss_fit$h_opt,
t_ind = rmss_fit$t_opt,
u_ind = rmss_fit$u_opt,
group_index = 1:rmss_fit$n_models)
sens_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/p.active
spec_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/sum(rmss_coefs[-1]!=0)
rmss_preds <- predict(rmss_fit, newx = x_test,
h_ind = rmss_fit$h_opt,
t_ind = rmss_fit$t_opt,
u_ind = rmss_fit$u_opt,
group_index = 1:rmss_fit$n_models,
dynamic = FALSE)
rmss_mspe <- mean((y_test - rmss_preds)^2)/sigma^2
[Package RMSS version 1.1.1 Index]