cv.RMSS {RMSS} | R Documentation |
Cross-Validatoin for Robust Multi-Model Subset Selection
Description
cv.RMSS
performs the cross-validation procedure for robust multi-model subset selection.
Usage
cv.RMSS(
x,
y,
n_models,
h_grid,
t_grid,
u_grid,
initial_estimator = c("robStepSplitReg", "srlars")[1],
tolerance = 0.1,
max_iter = 1000,
neighborhood_search = FALSE,
neighborhood_search_tolerance = 0.1,
cv_criterion = c("tau", "trimmed")[1],
n_folds = 5,
alpha = 1/4,
gamma = 1,
n_threads = 1
)
Arguments
x |
Design matrix. |
y |
Response vector. |
n_models |
Number of models into which the variables are split. |
h_grid |
Grid for robustness parameter. |
t_grid |
Grid for sparsity parameter. |
u_grid |
Grid for diversity parameter. |
initial_estimator |
Method used for initial estimator. Must be one of "robStepSplitReg" (default) or "srlars". |
tolerance |
Tolerance level for convergence of PSBGD algorithm. |
max_iter |
Maximum number of iterations in PSBGD algorithm. |
neighborhood_search |
Neighborhood search to improve solution. Default is FALSE. |
neighborhood_search_tolerance |
Tolerance parameter for neighborhood search. Default is 1e-1. |
cv_criterion |
Criterion to use for cross-validation procedure. Must be one of "tau" (default) or "trimmed". |
n_folds |
Number of folds for cross-validation procedure. Default is 5. |
alpha |
Proportion of trimmed samples for cross-validation procedure. Default is 1/4. |
gamma |
Weight parameter for ensemble MSPE (gamma) and average MSPE of individual models (1 - gamma). Default is 1. |
n_threads |
Number of threads used by OpenMP for multithreading over the folds. Default is 1. |
Value
An object of class cv.RMSS
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
Examples
# Simulation parameters
n <- 50
p <- 100
rho <- 0.8
rho.inactive <- 0.2
group.size <- 5
p.active <- 15
snr <- 2
contamination.prop <- 0.3
# Setting the seed
set.seed(0)
# Block Correlation
sigma.mat <- matrix(0, p, p)
sigma.mat[1:p.active, 1:p.active] <- rho.inactive
for(group in 0:(p.active/group.size - 1))
sigma.mat[(group*group.size+1):(group*group.size+group.size),
(group*group.size+1):(group*group.size+group.size)] <- rho
diag(sigma.mat) <- 1
# Simulation of beta vector
true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7),
rep(0, p - p.active))
# Setting the SD of the variance
sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
# Simulation of test data
m <- 2e3
x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)
# Simulation of uncontaminated data
x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
y <- x %*% true.beta + rnorm(n, 0, sigma)
# Contamination of data
contamination_indices <- 1:floor(n*contamination.prop)
k_lev <- 2
k_slo <- 100
x_train <- x
y_train <- y
beta_cont <- true.beta
beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
for(cont_id in contamination_indices){
a <- runif(p, min = -1, max = 1)
a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + k_lev * a /
as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
}
# CV RMSS
rmss_fit <- cv.RMSS(x = x_train, y = y_train,
n_models = 3,
h_grid = c(35), t_grid = c(6, 8, 10), u_grid = c(1:3),
initial_estimator = "robStepSplitReg",
tolerance = 1e-1,
max_iter = 1e3,
neighborhood_search = FALSE,
neighborhood_search_tolerance = 1e-1,
n_folds = 5,
alpha = 1/4,
gamma = 1,
n_threads = 1)
rmss_coefs <- coef(rmss_fit,
h_ind = rmss_fit$h_opt,
t_ind = rmss_fit$t_opt,
u_ind = rmss_fit$u_opt,
group_index = 1:rmss_fit$n_models)
sens_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/p.active
spec_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/sum(rmss_coefs[-1]!=0)
rmss_preds <- predict(rmss_fit, newx = x_test,
h_ind = rmss_fit$h_opt,
t_ind = rmss_fit$t_opt,
u_ind = rmss_fit$u_opt,
group_index = 1:rmss_fit$n_models,
dynamic = FALSE)
rmss_mspe <- mean((y_test - rmss_preds)^2)/sigma^2