rmm {RMM} | R Documentation |
Fitting Revenue Management Models
Description
rmm
is used to fit Revenue Management Models. Users can specify
cl (conditional logit model) and ml (multinomial logit model) as RMM model.
Usage
rmm(rmm_data, prop = 0.7, model = "cl")
Arguments
rmm_data |
an object of class "rmm_data", a output of |
prop |
numeric, user assumed market share. |
model |
character, specify fitting method ("cl" or "ml"). "cl" (default) refers to the Conditional Logit Model, and "ml" refers to the Multinomial Logit Model. |
Value
rmm
returns an object of class inheriting from "rmm".
See Also
rmm
fits the model with the RDE method introduced in doi:10.2139/ssrn.3598259.
Examples
data(Hotel_Long)
# Before using the rmm function, the user must first use the rmm_shape function.
rst_reshape <- rmm_reshape(data=Hotel_Long, idvar="Booking_ID", alts="Room_Type",
asv="Price", resp="Purchase", min_obs=30)
# Fitting a model
rst_rmm <- rmm(rst_reshape, prop=0.7, model="cl")
print(rst_rmm)
[Package RMM version 0.1.0 Index]