run_MC_LM_OSL_TUN {RLumCarlo} | R Documentation |
Run Monte-Carlo Simulation for LM-OSL (tunnelling transitions)
Description
Runs a Monte-Carlo (MC) simulation of linearly modulated optically stimulated luminescence (LM-OSL) using the tunnelling (TUN) model. Tunnelling refers to quantum mechanical tunnelling processes from the excited state of the trapped charge, into a recombination centre.
Usage
run_MC_LM_OSL_TUN(
A,
rho,
times,
clusters = 10,
r_c = 0,
delta.r = 0.1,
N_e = 200,
method = "par",
output = "signal",
...
)
Arguments
A |
numeric (required): The effective optical excitation rate for the tunnelling process |
rho |
numeric (required): The dimensionless density of recombination centres
(defined as |
times |
numeric (required): The sequence of time steps within the simulation (s) |
clusters |
numeric (with default): The number of MC runs |
r_c |
numeric (with default): Critical distance (>0) that is to be used if the
sample has 1 been thermally and/or optically pretreated. This parameter expresses the fact
that electron-hole pairs within a critical radius |
delta.r |
numeric (with default): Increments of dimensionless distance r' |
N_e |
numeric (width default): The total number of electron traps available (dimensionless). Can be a vector of |
method |
character (with default): Sequential |
output |
character (with default): output is either the |
... |
further arguments, such as |
Details
The model
I_{TUN}(r',t) = -dn/dt = (A * t/P) * exp(-(\rho')^{-1/3} * r') * n(r',t)
Where in the function:
A := the optical excitation rate for the tunnelling process (s^-1)
t := time (s)
P := maximum stimulation time (s)
r' := the dimensionless tunnelling radius
\rho
:= rho
the dimensionless density of recombination centres see Huntley (2006)
n := the instantaneous number of electrons corresponding to the radius r'
Value
This function returns an object of class RLumCarlo_Model_Output
which
is a list consisting of an array with dimension length(times) x length(r) x clusters
and a numeric time vector.
Function version
0.1.0
How to cite
Friedrich, J., Kreutzer, S., 2022. run_MC_LM_OSL_TUN(): Run Monte-Carlo Simulation for LM-OSL (tunnelling transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2022. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence Phenomena. R package version 0.1.9. https://CRAN.R-project.org/package=RLumCarlo
Author(s)
Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany)
References
Huntley, D.J., 2006. An explanation of the power-law decay of luminescence. Journal of Physics: Condensed Matter, 18(4), 1359.
Pagonis, V. and Kulp, C., 2017. Monte Carlo simulations of tunneling phenomena and nearest neighbor hopping mechanism in feldspars. Journal of Luminescence 181, 114–120. doi:10.1016/j.jlumin.2016.09.014
Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi:10.1016/j.jlumin.2018.11.024
Further reading Aitken, M.J., 1985. Thermoluminescence dating. Academic Press.
Jain, M., Guralnik, B., Andersen, M.T., 2012. Stimulated luminescence emission from localized recombination in randomly distributed defects. Journal of Physics: Condensed Matter 24, 385402.
Examples
##the short example
run_MC_LM_OSL_TUN(
A = 1,
rho = 1e-3,
times = 0:100,
clusters = 10,
N_e = 100,
r_c = 0.1,
delta.r = 1e-1,
method = "seq",
output = "signal") %>%
plot_RLumCarlo(norm = TRUE)
## Not run:
## the long (meaningful) example
results <- run_MC_LM_OSL_TUN(
A = 1,
rho = 1e-3,
times = 0:1000,
clusters = 30,
N_e = 100,
r_c = 0.1,
delta.r = 1e-1,
method = "par",
output = "signal")
plot_RLumCarlo(results, norm = TRUE)
## End(Not run)