plot_RLumCarlo {RLumCarlo} | R Documentation |
Plot RLumCarlo Monte-Carlo Simulation Results
Description
Visualise 'RLumCarlo' modelling results without extracting the values manually. Typically visualised are the averaged signal or the number of remaining electrons, with a polygon indicating modelling uncertainties.
Usage
plot_RLumCarlo(
object,
plot_value = "mean",
plot_uncertainty = "range",
FUN = NULL,
norm = FALSE,
add = FALSE,
...
)
Arguments
object |
list of class |
plot_value |
character (with default): type of curve value to be displayed.
Allowed are |
plot_uncertainty |
character (with default): type of the displayed uncertainty. Allowed
values are |
FUN |
function (optional): own function that can be applied to the y-values before normalisation and plotting |
norm |
logical (with default): normalise curve to the highest intensity value |
add |
logical (with default): allows overplotting of results by adding curves to
an existing plot. This argument is handled automatically if |
... |
further argument, that can be passed to control the plot output largely
following the argument names in graphics::plot.default. Currently supported
are: |
Details
For colouring the curves, the package khroma::khroma-package is used to provide colours that can be best distinguished, in particular by colour-blind users.
Value
This function returns a graphical output which is the visualisation of the modelling output.
Function version
0.1.0
How to cite
Kreutzer, S., Friedrich, J., 2022. plot_RLumCarlo(): Plot RLumCarlo Monte-Carlo Simulation Results. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2022. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence Phenomena. R package version 0.1.9. https://CRAN.R-project.org/package=RLumCarlo
Author(s)
Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany)
Johannes Friedrich, University of Bayreuth (Germany)
Examples
## plain plot
DELOC <- run_MC_TL_DELOC(
s = 3.5e12,
E = 1.45,
R = 0.1,
method = 'seq',
clusters = 100,
times = 150:350) %T>%
plot_RLumCarlo(legend = TRUE)
## TL with FUN to correct for thermal
## quenching
f <- function(x) x * 1/(1 + (2e+6 * exp(-0.55/(8.617e-5 * (DELOC$time + 273)))))
plot_RLumCarlo(
object = DELOC,
FUN = f)