mu_max {RKHSMetaMod} | R Documentation |
Function to find the maximal value of the penalty parameter in the RKHS Group Lasso problem.
Description
Calculates the value of the penalty parameter in the RKHS group lasso problem when the first penalized parameter group enters the model.
Usage
mu_max(Y, matZ)
Arguments
Y |
Vector of response observations of size |
matZ |
List of vMax components. Each component includes the eigenvalues and eigenvectors of the positive definite Gram matrices |
Details
Details.
Value
An object of type numeric is returned.
Note
Note.
Author(s)
Halaleh Kamari
References
Kamari, H., Huet, S. and Taupin, M.-L. (2019) RKHSMetaMod : An R package to estimate the Hoeffding decomposition of an unknown function by solving RKHS Ridge Group Sparse optimization problem. <arXiv:1905.13695>
Meier, L. Van de Geer, S. and Buhlmann, P. (2008) The group LASSO for logistic regression. Journal of the Royal Statistical Society Series B. 70. 53-71. 10.1111/j.1467-9868.2007.00627.x.
See Also
Examples
d <- 3
n <- 50
library(lhs)
X <- maximinLHS(n, d)
c <- c(0.2,0.6,0.8)
F <- 1;for (a in 1:d) F <- F*(abs(4*X[,a]-2)+c[a])/(1+c[a])
epsilon <- rnorm(n,0,1);sigma <- 0.2
Y <- F + sigma*epsilon
Dmax <- 3
kernel <- "matern"
Kv <- calc_Kv(X, kernel, Dmax, TRUE,TRUE)
matZ <- Kv$kv
mumax <- mu_max(Y, matZ)
mumax