RKHSMetMod {RKHSMetaMod} | R Documentation |
Function to produce a sequence of meta models that are the solutions of the RKHS Ridge Group Sparse or RKHS Group Lasso optimization problems.
Description
Calculates the Gram matrices K_v
for a chosen reproducing kernel and fits the solution of an RKHS ridge group sparse or an RKHS group lasso problem for each pair of penalty parameters (\mu,\gamma)
, for the Gaussian regression model.
Usage
RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, verbose)
Arguments
Y |
Vector of response observations of size |
X |
Matrix of observations with |
kernel |
Character, indicates the type of the reproducing kernel: matern |
Dmax |
Integer, between |
gamma |
Vector of non negative scalars, values of the penalty parameter |
frc |
Vector of positive scalars. Each element of the vector sets a value to the penalty parameter |
verbose |
Logical, if TRUE, prints: the group |
Details
Details.
Value
List of l components, with l equals to the number of pairs of the penalty parameters (\mu,\gamma)
. Each component of the list is a list of 3
components "mu", "gamma" and "Meta-Model":
mu |
Positive scalar, penalty parameter |
gamma |
Positive scalar, an element of the input vector gamma associated with the estimated Meta-Model. |
Meta-Model |
An RKHS Ridge Group Sparse or RKHS Group Lasso object associated with the penalty parameters mu and gamma: |
intercept |
Scalar, estimated value of intercept. |
teta |
Matrix with vMax rows and |
fit.v |
Matrix with |
fitted |
Vector of size |
Norm.n |
Vector of size vMax, estimated values for the Ridge penalty norm. |
Norm.H |
Vector of size vMax, estimated values of the Sparse Group penalty norm. |
supp |
Vector of active groups. |
Nsupp |
Vector of the names of the active groups. |
SCR |
Scalar, equals to |
crit |
Scalar, indicates the value of the penalized criteria. |
gamma.v |
Vector of size vMax, coefficients of the Ridge penalty norm, |
mu.v |
Vector of size vMax, coefficients of the Group Sparse penalty norm, |
iter |
List of two components: maxIter, and the number of iterations until the convergence is achieved. |
convergence |
TRUE or FALSE. Indicates whether the algorithm has converged or not. |
RelDiffCrit |
Scalar, value of the first convergence criteria at the last iteration, |
RelDiffPar |
Scalar, value of the second convergence criteria at the last iteration, |
Note
For the case \gamma=0
the outputs "mu"=\mu_g
and "Meta-Model" is the same as the one returned by the function RKHSgrplasso
.
Author(s)
Halaleh Kamari
References
Kamari, H., Huet, S. and Taupin, M.-L. (2019) RKHSMetaMod : An R package to estimate the Hoeffding decomposition of an unknown function by solving RKHS Ridge Group Sparse optimization problem. <arXiv:1905.13695>
See Also
calc_Kv
, mu_max
, RKHSgrplasso
, pen_MetMod
Examples
d <- 3
n <- 50
library(lhs)
X <- maximinLHS(n, d)
c <- c(0.2,0.6,0.8)
F <- 1;for (a in 1:d) F <- F*(abs(4*X[,a]-2)+c[a])/(1+c[a])
epsilon <- rnorm(n,0,1);sigma <- 0.2
Y <- F + sigma*epsilon
Dmax <- 3
kernel <- "matern"
frc <- c(10,100)
gamma <- c(.5,.01,.001,0)
result <- RKHSMetMod(Y,X,kernel,Dmax,gamma,frc,FALSE)
l <- length(result)
for(i in 1:l){print(result[[i]]$mu)}
for(i in 1:l){print(result[[i]]$gamma)}
for(i in 1:l){print(result[[i]]$`Meta-Model`$Nsupp)}