PSO_ACO_C {RKEEL} | R Documentation |
PSO_ACO_C KEEL Classification Algorithm
Description
PSO_ACO_C Classification Algorithm from KEEL.
Usage
PSO_ACO_C(train, test, max_uncovered_samples, min_saples_by_rule,
max_iterations_without_converge, enviromentSize, numParticles,
x, c1, c2, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
max_uncovered_samples |
max_uncovered_samples. Default value = 20 |
min_saples_by_rule |
min_saples_by_rule. Default value = 2 |
max_iterations_without_converge |
max_iterations_without_converge. Default value = 100 |
enviromentSize |
enviromentSize. Default value = 3 |
numParticles |
numParticles. Default value = 100 |
x |
x. Default value = 0.72984 |
c1 |
c1. Default value = 2.05 |
c2 |
c2. Default value = 2.05 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PSO_ACO_C(data_train, data_test,
max_iterations_without_converge=2, numParticles=5)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
[Package RKEEL version 1.3.4 Index]