NU_SVR_R {RKEEL} | R Documentation |
NU_SVR_R KEEL Regression Algorithm
Description
NU_SVR_R Regression Algorithm from KEEL.
Usage
NU_SVR_R(train, test, KernelType, C, eps, degree, gamma,
coef0, nu, p, shrinking, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = ? |
C |
C. Default value = ? |
eps |
eps. Default value = ? |
degree |
degree. Default value = ? |
gamma |
gamma. Default value = ? |
coef0 |
coef0. Default value = ? |
nu |
nu. Default value = ? |
p |
p. Default value = ? |
shrinking |
shrinking. Default value = ? |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::NU_SVR_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
[Package RKEEL version 1.3.4 Index]