MLP_BP_R {RKEEL} | R Documentation |
MLP_BP_R KEEL Regression Algorithm
Description
MLP_BP_R Regression Algorithm from KEEL.
Usage
MLP_BP_R(train, test, hidden_layers, hidden_nodes, transfer,
eta, alpha, lambda, test_data, validation_data,
cross_validation, cycles, improve, tipify_inputs,
save_all, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_layers. Default value = 2 | |
hidden_nodes. Default value = 15 | |
transfer |
transfer. Default value = "Htan" |
eta |
eta. Default value = 0.15 |
alpha |
alpha. Default value = 0.1 |
lambda |
lambda. Default value = 0.0 |
test_data |
test_data. Default value = TRUE |
validation_data |
validation_data. Default value = FALSE |
cross_validation |
cross_validation. Default value = FALSE |
cycles |
cycles. Default value = 10000 |
improve |
improve. Default value = 0.01 |
tipify_inputs |
tipify_inputs. Default value = TRUE |
save_all |
save_all. Default value = FALSE |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::MLP_BP_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
[Package RKEEL version 1.3.4 Index]