IterativePartitioningFilter_F {RKEEL} | R Documentation |
IterativePartitioningFilter_F KEEL Preprocess Algorithm
Description
IterativePartitioningFilter_F Preprocess Algorithm from KEEL.
Usage
IterativePartitioningFilter_F(train, test, numPartitions,
filterType, confidence, itemsetsPerLeaf, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numPartitions |
numPartitions. Default value = 5 |
filterType |
filterType. Default value = "consensus" |
confidence |
confidence. Default value = 0.25 |
itemsetsPerLeaf |
itemsetsPerLeaf. Default value = 2 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::IterativePartitioningFilter_F(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
[Package RKEEL version 1.3.4 Index]