GFS_RB_MF_R {RKEEL} | R Documentation |
GFS_RB_MF_R KEEL Regression Algorithm
Description
GFS_RB_MF_R Regression Algorithm from KEEL.
Usage
GFS_RB_MF_R(train, test, numLabels, popSize, generations,
crossProb, mutProb, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
popSize |
popSize. Default value = 50 |
generations |
generations. Default value = 100 |
crossProb |
crossProb. Default value = 0.9 |
mutProb |
mutProb. Default value = 0.1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test)
algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test, popSize = 5, generations = 10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
[Package RKEEL version 1.3.4 Index]