FuzzyFARCHD_C {RKEEL} | R Documentation |
FuzzyFARCHD_C KEEL Classification Algorithm
Description
FuzzyFARCHD_C Classification Algorithm from KEEL.
Usage
FuzzyFARCHD_C(train, test, linguistic_values, min_support,
max_confidence, depth_max, K, max_evaluations, pop_size,
alpha, bits_per_gen, inference_type, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
linguistic_values |
linguistic_values. Default value = 5 |
min_support |
min_support. Default value = 0.05 |
max_confidence |
max_confidence. Default value = 0.8 |
depth_max |
depth_max. Default value = 3 |
K |
K. Default value = 2 |
max_evaluations |
max_evaluations. Default value = 15000 |
pop_size |
pop_size. Default value = 50 |
alpha |
alpha. Default value = 0.15 |
bits_per_gen |
bits_per_gen. Default value = 30 |
inference_type |
inference_type. Default value = 1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::FuzzyFARCHD_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
[Package RKEEL version 1.3.4 Index]