| CPAR_C {RKEEL} | R Documentation | 
CPAR_C KEEL Associative Classification Algorithm
Description
CPAR_C Associative Classification Algorithm from KEEL.
Usage
CPAR_C(train, test, delta, min_gain, alpha, rules_prediction)
Arguments
| train | Train dataset as a data.frame object | 
| test | Test dataset as a data.frame object | 
| delta | delta. Default value = 0.05 | 
| min_gain | min_gain. Default value = 0.7 | 
| alpha | alpha. Default value = 0.66 | 
| rules_prediction | rules_prediction. Default value = 5 | 
Value
A data.frame with the actual and predicted classes for both train and test datasets.
Examples
data <- loadKeelDataset("breast")
#Create algorithm
algorithm <- RKEEL::CPAR_C(data, data)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
[Package RKEEL version 1.3.4 Index]