CBA_C {RKEEL} | R Documentation |
CBA_C KEEL Associative Classification Algorithm
Description
CBA_C Associative Classification Algorithm from KEEL.
Usage
CBA_C(train, test, min_support, min_confidence, pruning, maxCandidates)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
min_support |
min_support. Default value = 0.01 |
min_confidence |
min_confidence. Default value = 0.5 |
pruning |
indicates wether pruning or not. Default value = TRUE |
maxCandidates |
maxCandidates; if 0, no limit. Default value = 80000 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data <- loadKeelDataset("breast")
#Create algorithm
algorithm <- RKEEL::CBA_C(data, data)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
[Package RKEEL version 1.3.4 Index]