AdaBoost_I {RKEEL} | R Documentation |
AdaBoost_I KEEL Imbalanced Classification Algorithm
Description
AdaBoost_I Imbalanced Classification Algorithm from KEEL.
Usage
AdaBoost_I(train, test, pruned, confidence, instancesPerLeaf,
numClassifiers, algorithm, trainMethod, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruned |
pruned. Default value = TRUE |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
numClassifiers |
numClassifiers. Default value = 10 |
algorithm |
algorithm. Default value = "ADABOOST" |
trainMethod |
trainMethod. Default value = "NORESAMPLING" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::AdaBoost_I(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
[Package RKEEL version 1.3.4 Index]