markov.4states {RISCA} | R Documentation |
4-State Time-Inhomogeneous Markov Model
Description
The 4-state Markov model includes an initial state (X=1), a transient state (X=2) and two absorbing states (X=3 and X=4). The possible transitions are: 1->2, 1->3, 1->4, 2->3 and 2->4.
Usage
markov.4states(times1, times2, sequences, weights=NULL, dist,
cuts.12=NULL, cuts.13=NULL, cuts.14=NULL, cuts.23=NULL, cuts.24=NULL,
ini.base.12=NULL, ini.base.13=NULL, ini.base.14=NULL,
ini.base.23=NULL, ini.base.24=NULL,
cov.12=NULL, init.cov.12=NULL, names.12=NULL,
cov.13=NULL, init.cov.13=NULL, names.13=NULL,
cov.14=NULL, init.cov.14=NULL, names.14=NULL,
cov.23=NULL, init.cov.23=NULL, names.23=NULL,
cov.24=NULL, init.cov.24=NULL, names.24=NULL,
conf.int=TRUE, silent=TRUE, precision=10^(-6))
Arguments
times1 |
A numeric vector with the observed times in days from baseline to the first transition (X=2, X=3 or X=4) or to the right-censoring (in X=1 at the last follow-up). |
times2 |
A numeric vector with the observed times in days from baseline to the second transition or to the right censoring (in X=2 at the last follow-up). |
sequences |
a numeric vector with the sequences of observed states. Six possible values are allowed: 1 (individual right-censored in X=1), 12 (individual right-censored in X=2), 13 (individual who directly transited from X=1 to X=3), 14 (individual who directly transited from X=1 to X=4), 123 (individual who transited from X=1 to X=3 through X=2), 124 (individual who transited from X=1 to X=4 through X=2). |
weights |
A numeric vector with the weights for correcting the contribution of each individual. When the vector is completed, the IPW estimator is implemented. Default is |
dist |
A character vector with three arguments describing respectively the distributions of duration time for transitions 1->2, 1->3 and 2->3. Arguments allowed are |
cuts.12 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=1 to X=2. Only internal timepoints are allowed: timepoints cannot be |
cuts.13 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=1 to X=3. Only internal timepoints are allowed: timepoints cannot be |
cuts.14 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=1 to X=4. Only internal timepoints are allowed: timepoints cannot be |
cuts.23 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=2 to X=3. Only internal timepoints are allowed: timepoints cannot be |
cuts.24 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=2 to X=4. Only internal timepoints are allowed: timepoints cannot be |
ini.base.12 |
A numeric vector of initial values for the distribution from X=1 to X=2. The logarithm of the parameters have to be declared. Default value is 1. |
ini.base.13 |
A numeric vector of initial values for the distribution from X=1 to X=3. The logarithm of the parameters have to be declared. Default value is 1. |
ini.base.14 |
A numeric vector of initial values for the distribution from X=1 to X=4. The logarithm of the parameters have to be declared. Default value is 1. |
ini.base.23 |
A numeric vector of initial values for the distribution from X=2 to X=3. The logarithm of the parameters have to be declared. Default value is 1. |
ini.base.24 |
A numeric vector of initial values for the distribution from X=2 to X=4. The logarithm of the parameters have to be declared. Default value is 1. |
cov.12 |
A matrix (or data frame) with the explicative time-fixed variable(s) related to the time from X=1 to X=2. |
init.cov.12 |
A numeric vector of initial values for regression coefficients (logarithm of the cause-specific hazards ratios) associated to |
names.12 |
An optional character vector with name of explicative variables associated to |
cov.13 |
A numeric matrix (or data frame) with the explicative time-fixed variable(s) related to the time from X=1 to X=3. |
init.cov.13 |
A numeric vector of initial values for regression coefficients (logarithm of the cause-specific hazards ratios) associated to |
names.13 |
An optional character vector with name of explicative variables associated to |
cov.14 |
A numeric matrix (or data frame) with the explicative time-fixed variable(s) related to the time from X=1 to X=4. |
init.cov.14 |
A numeric vector of initial values for regression coefficients (logarithm of the cause-specific hazards ratios) associated to |
names.14 |
An optional character vector with name of explicative variables associated to |
cov.23 |
A numeric matrix (or data frame) with the explicative time-fixed variable(s) related to the time from X=2 to X=3. |
init.cov.23 |
A numeric vector of initial values for regression coefficients (logarithm of the cause-specific hazards ratios) associated to |
names.23 |
An optional character vector with name of explicative variables associated to |
cov.24 |
A numeric matrix (or data frame) with the explicative time-fixed variable(s) related to the time from X=2 to X=4. |
init.cov.24 |
A numeric vector of initial values for regression coefficients (logarithm of the cause-specific hazards ratios) associated to |
names.24 |
An optional character vector with name of explicative variables associated to |
conf.int |
A logical value specifying if the pointwise confidence intervals for parameters and the variance-covariance matrix should be returned. Default is |
silent |
A logical value specifying if the log-likelihood value should be returned at each iteration. Default is |
precision |
A numeric positive value indicating the required precision for the log-likelihood maximization between each iteration. Default is |
Details
Hazard functions available are:
Exponential distribution | \lambda(t)=1/\sigma |
Weibull distribution | \lambda(t)=\nu(\frac{1}{\sigma})^{\nu}t^{\nu-1} |
Generalized Weibull distribution | \lambda(t)=\frac{1}{\theta}\left(1+\left(\frac{t}{\sigma}\right)^{\nu}\right)^{\frac{1}{\theta}-1} \nu\left(\frac{1}{\sigma}\right)^{\nu} t^{\nu-1}
|
with \sigma
, \nu
,and \theta>0
. The parameter \sigma
varies for each interval when the distribution is piecewise Exponential. We advise to initialize the logarithm of these parameters in ini.base.12
, ini.base.13
and ini.base.23
.
To estimate the marginal effect of a binary exposure, the weights
may be equal to 1/p
, where p
is the estimated probability that the individual belongs to his or her own observed group of exposure. The probabilities p
are often estimated by a logistic regression in which the dependent binary variable is the exposure. The possible confounding factors are the explanatory variables of this logistic model.
Value
object |
A character string indicating the estimated model: "markov.4states (4-state time-inhomogeneous markov model)". |
dist |
A character vector with two arguments describing respectively the distributions of duration time for transitions 1->2, 1->3, 1->4, 2->3, and 2->4. |
cuts.12 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=1 to X=2. |
cuts.13 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=1 to X=3. |
cuts.14 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=1 to X=4. |
cuts.23 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=2 to X=3. |
cuts.24 |
A numeric vector indicating the timepoints in days for the piecewise exponential distribution related to the time from X=2 to X=4. |
covariates |
A numeric vector indicating the numbers of covariates respectively related to the transition 1->2, 1->3, 1->4, 2->3, and 2->4. |
table |
A data frame containing the estimated parameters of the model ( |
cov.matrix |
A data frame corresponding to variance-covariance matrix of the parameters. |
LogLik |
A numeric value corresponding to the log-likelihood of the estimated model. |
AIC |
A numeric value corresponding to the Akaike Information Criterion of the estimated model. |
Author(s)
Yohann Foucher <Yohann.Foucher@univ-poitiers.fr>
Florence Gillaizeau <Florence.Gillaizeau@univ-nantes.fr>
References
Huszti et al. Relative survival multistate Markov model. Stat Med. 10;31(3):269-86, 2012. <DOI: 10.1002/sim.4392>
Gillaizeau et al. Inverse Probability Weighting to control confounding in an illness-death model for interval-censored data. Stat Med. 37(8):1245-1258, 2018. <doi: 10.1002/sim.7550>.
Examples
# import the observed data
# (X=1 corresponds to initial state with a functioning graft, X=2 to acute rejection episode,
# X=3 to return to dialysis, X=4 to death with a functioning graft)
data(dataDIVAT1)
# A subgroup analysis to reduce the time needed for this example
dataDIVAT1$id<-c(1:nrow(dataDIVAT1))
set.seed(2)
d4<-dataDIVAT1[dataDIVAT1$id %in% sample(dataDIVAT1$id, 200, replace = FALSE),]
# 4-state parametric Markov model including one explicative variable ('z')
# on the trainsition from X=1 to X=2. We only reduced
# the precision and the number of iteration to save time in this example,
# prefer the default values.
markov.4states(times1=d4$time1, times2=d4$time2, sequences=d4$trajectory,
dist=c("E","E","E","E","E"),
ini.base.12=c(8.31), ini.base.13=c(10.46), ini.base.14=c(10.83),
ini.base.23=c(9.01), ini.base.24=c(10.81),
cov.12=d4$z, init.cov.12=c(-0.02), names.12=c("beta12_z") ,
conf.int=TRUE, silent=FALSE, precision=0.001)$table