| preRSum0 {RIFS} | R Documentation | 
Prefractal points in R^n generated with a matrix of random sums
Description
preRSum0() function generates a sample of fractal (prefractal) points in R^n with a matrix of random sums of a numerical series.
Usage
preRSum0(n=10000, mu=1, eps=1e-9, Z=R2ngon(),
         P=rep(1/nrow(Z), times=nrow(Z)))
Arguments
| n | a number of prefractal points. | 
| mu | a partition coefficient for iterative segments. | 
| eps | an error of a random sum of a numerical series. | 
| Z | a set of protofractal points. | 
| P | a probability distribution of protofractal points. | 
Details
A protofractal set Z is a discrete or continuous set, which in the iterative process generates a prefractal set X.
A prefractal set S%*%Z is a sample of a fractal set generates with a matrix of random sums S of a numerical series:
S[i,j] <- sum(X[l==j]), 
where i in seq(n); j in seq(k); k <- nrow(Z); X <- mu/(mu+1)^seq(m); m <- 1-log(eps*mu)/log(1+mu); l <- sample.int(k, size=m, prob=P, replace=TRUE).
Value
A list with the prefractal ($pre) and protofractal points ($proto); distributions of probabilities & coefficients ($distr).
Author(s)
Pavel V. Moskalev, Alexey G. Bukhovets and Tatyana Ya. Biruchinskay
References
Bukhovets A.G. and Bukhovets E.A. (2012) Modeling of fractal data structures. Automation and Remote Control, Vol.73, No.2, pp.381-385, doi:10.1134/S0005117912020154.
Bukhovetc A.G. and Biruchinskay T.Y. (2011) Modelling fractal's properties of system objects. Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, No.2 (July-December), pp.22-26; in Russian.
See Also
Examples
# Example 1a. Sierpinski triangle, 1st order, p=const, mu=const
l <- preRSum0()
plot(l$proto, asp=1, col="red",
     main="Prefractal points for 3-gon: k=3; p=1/3; mu=1")
points(l$pre, pch=46, col="red")
## Not run: 
# Example 1b. Sierpinski triangle, 1st order, p=var, mu=const
l <- preRSum0(P=c(2,2,5)/9)
plot(l$proto, asp=1, col="red",
     main="Prefractal points for 3-gon: k=3; p=(2,2,5)/9; mu=1")
points(l$pre, pch=46, col="red")
# Example 2a. Sierpinski square, 2nd order, p=const, mu=const
l <- preRSum0(Z=R2ngon(4,2), mu=2)
plot(l$proto, asp=1, col="red",
     main="Prefractal points for 4-gon: k=8, p=1/8, mu=2")
points(l$pre, pch=46, col="red")
# Example 2b. Sierpinski square, 2nd order, p=var, mu=const
l <- preRSum0(Z=R2ngon(4,2), P=2^abs(seq(-3,4))/45, mu=2)
plot(l$proto, asp=1, col="red",
     main="Prefractal points for 4-gon: k=8, p=2^|-3:4|/45, mu=2")
points(l$pre, pch=46, col="red")
## End(Not run)