preRSum0 {RIFS} | R Documentation |
Prefractal points in R^n generated with a matrix of random sums
Description
preRSum0()
function generates a sample of fractal (prefractal) points in R^n with a matrix of random sums of a numerical series.
Usage
preRSum0(n=10000, mu=1, eps=1e-9, Z=R2ngon(),
P=rep(1/nrow(Z), times=nrow(Z)))
Arguments
n |
a number of prefractal points. |
mu |
a partition coefficient for iterative segments. |
eps |
an error of a random sum of a numerical series. |
Z |
a set of protofractal points. |
P |
a probability distribution of protofractal points. |
Details
A protofractal set Z
is a discrete or continuous set, which in the iterative process generates a prefractal set X
.
A prefractal set S%*%Z
is a sample of a fractal set generates with a matrix of random sums S
of a numerical series:
S[i,j] <- sum(X[l==j])
,
where i in seq(n)
; j in seq(k)
; k <- nrow(Z)
; X <- mu/(mu+1)^seq(m)
; m <- 1-log(eps*mu)/log(1+mu)
; l <- sample.int(k, size=m, prob=P, replace=TRUE)
.
Value
A list with the prefractal ($pre
) and protofractal points ($proto
); distributions of probabilities & coefficients ($distr
).
Author(s)
Pavel V. Moskalev, Alexey G. Bukhovets and Tatyana Ya. Biruchinskay
References
Bukhovets A.G. and Bukhovets E.A. (2012) Modeling of fractal data structures. Automation and Remote Control, Vol.73, No.2, pp.381-385, doi:10.1134/S0005117912020154.
Bukhovetc A.G. and Biruchinskay T.Y. (2011) Modelling fractal's properties of system objects. Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, No.2 (July-December), pp.22-26; in Russian.
See Also
Examples
# Example 1a. Sierpinski triangle, 1st order, p=const, mu=const
l <- preRSum0()
plot(l$proto, asp=1, col="red",
main="Prefractal points for 3-gon: k=3; p=1/3; mu=1")
points(l$pre, pch=46, col="red")
## Not run:
# Example 1b. Sierpinski triangle, 1st order, p=var, mu=const
l <- preRSum0(P=c(2,2,5)/9)
plot(l$proto, asp=1, col="red",
main="Prefractal points for 3-gon: k=3; p=(2,2,5)/9; mu=1")
points(l$pre, pch=46, col="red")
# Example 2a. Sierpinski square, 2nd order, p=const, mu=const
l <- preRSum0(Z=R2ngon(4,2), mu=2)
plot(l$proto, asp=1, col="red",
main="Prefractal points for 4-gon: k=8, p=1/8, mu=2")
points(l$pre, pch=46, col="red")
# Example 2b. Sierpinski square, 2nd order, p=var, mu=const
l <- preRSum0(Z=R2ngon(4,2), P=2^abs(seq(-3,4))/45, mu=2)
plot(l$proto, asp=1, col="red",
main="Prefractal points for 4-gon: k=8, p=2^|-3:4|/45, mu=2")
points(l$pre, pch=46, col="red")
## End(Not run)