plotR2pre {RIFS}R Documentation

Plot a prefractal set in R^2

Description

plotR2pre() function draws a prefractal set in R^2.

Usage

plotR2pre(l=preRIFS(),
          s="Prefractal points for 3-gon: k=3; p=1/3; mu=1")

Arguments

l

a list with prefractal ($pre) and protofractal ($proto) points & indexes ($index).

s

a string for the main title.

Details

A regular polygon is a convex polygon in which all edges and all angles are equal.

A protofractal set Z is a discrete or continuous set, which in the iterative process generates a sample of the fractal set (a prefractal set) X.

Author(s)

Pavel V. Moskalev and Alexey G. Bukhovets

See Also

preRIFS,

Examples

# Example 1. Sierpinski triangle, 1st order, p=const, mu=var
for (m in seq(-4,0)) {
  plotR2pre(preRIFS(M=2^rnorm(n=3, mean=m, sd=-m/4)),
            s="Prefractal points for 1st order 3-gon")
  Sys.sleep(0.1)
}

## Not run: 
# Example 2. Uniform distribution, 1st order, p=const, mu=var
for (m in seq(-4,0)) {
  plotR2pre(preRIFS(Z=R2ngon(4,1),
                    M=2^rnorm(n=4, mean=m, sd=-m/4)),
            s="Prefractal points for 1st order 4-gon")
  Sys.sleep(0.1)
}

# Example 3. Sierpinski triangle, 2nd order, p=const, mu=var
for (m in seq(-3,1)) {
  plotR2pre(preRIFS(Z=R2ngon(3,2),
                    M=2^rnorm(n=6, mean=m, sd=-(m-1)/4)),
            s="Prefractal points for 2nd order 3-gon")
  Sys.sleep(0.5)
}

# Example 4. Sierpinski square, 2nd order, p=const, mu=var
for (m in seq(-3,1)) {
  plotR2pre(preRIFS(Z=R2ngon(4,2),
                    M=2^rnorm(n=8, mean=m, sd=-(m-1)/4)),
            s="Prefractal points for 2nd order 4-gon")
  Sys.sleep(0.5)
}

## End(Not run)

[Package RIFS version 0.1.6 Index]