plotR2pre {RIFS} | R Documentation |
Plot a prefractal set in R^2
Description
plotR2pre()
function draws a prefractal set in R^2.
Usage
plotR2pre(l=preRIFS(),
s="Prefractal points for 3-gon: k=3; p=1/3; mu=1")
Arguments
l |
a list with prefractal ( |
s |
a string for the main title. |
Details
A regular polygon is a convex polygon in which all edges and all angles are equal.
A protofractal set Z
is a discrete or continuous set, which in the iterative process generates a sample of the fractal set (a prefractal set) X
.
Author(s)
Pavel V. Moskalev and Alexey G. Bukhovets
See Also
Examples
# Example 1. Sierpinski triangle, 1st order, p=const, mu=var
for (m in seq(-4,0)) {
plotR2pre(preRIFS(M=2^rnorm(n=3, mean=m, sd=-m/4)),
s="Prefractal points for 1st order 3-gon")
Sys.sleep(0.1)
}
## Not run:
# Example 2. Uniform distribution, 1st order, p=const, mu=var
for (m in seq(-4,0)) {
plotR2pre(preRIFS(Z=R2ngon(4,1),
M=2^rnorm(n=4, mean=m, sd=-m/4)),
s="Prefractal points for 1st order 4-gon")
Sys.sleep(0.1)
}
# Example 3. Sierpinski triangle, 2nd order, p=const, mu=var
for (m in seq(-3,1)) {
plotR2pre(preRIFS(Z=R2ngon(3,2),
M=2^rnorm(n=6, mean=m, sd=-(m-1)/4)),
s="Prefractal points for 2nd order 3-gon")
Sys.sleep(0.5)
}
# Example 4. Sierpinski square, 2nd order, p=const, mu=var
for (m in seq(-3,1)) {
plotR2pre(preRIFS(Z=R2ngon(4,2),
M=2^rnorm(n=8, mean=m, sd=-(m-1)/4)),
s="Prefractal points for 2nd order 4-gon")
Sys.sleep(0.5)
}
## End(Not run)
[Package RIFS version 0.1.6 Index]