BinaryClass {RHclust} | R Documentation |
Binary Classification
Description
A confusion matrix but allows for anaylsis of non-equal level data classifications.
Usage
BinaryClass(x)
Arguments
x |
Can be a data frame dimensions at least 2 rows and 2 columns meant to represent observed and predicted values where the observed (true) values are in the first column and predicted columns in the second column. |
Details
BinaryClass() is similar to a confusion matrix with binary classification outputs. The true positive values per column are identified based on the maximum number of assignments per category.
Value
Table |
the results of 'table()' on 'x' |
Accuracy |
overall accuracy of classification |
CI |
confidence interval of overall accuracy using Clopper-Pearson Interval |
Group Measures |
the sensitivity, specificity, positive predictive value, negative predictive value, prevelance detection rate, detection prevalence, and balanced accuracy for each class |
Author(s)
jkhndwrk@memphis.edu
Examples
# Basic example
true = c(rep(1,5), rep(2,5), rep(3,5), rep(4,5))
pred = c(rep(1,4),4,rep(2,5),2,rep(3,4),1,rep(4,4))
df = cbind(true,pred)
BinaryClass(df)
true = c(rep(1,5), rep(2,5), rep(3,5), rep(4,5))
pred = c(rep(1,5),rep(2,5),rep(3,10))
df = cbind(true,pred)
BinaryClass(df)
sd = SimData(k = c(10,40,50))
out = VIP(sd, v = 3, optimize = 'elbow', nstart = 5)
df = out$`BC Test`
BinaryClass(df)
## Looping through different clusters
sd = SimData(seed = 1, gene = 1)
acc = NULL
for (i in 1:5){
out = VIP(sd, v = i, optimize = 'off', nstart = 5)
acc[i] = BinaryClass(out$`BC Test`)$Accuracy
}
plot(acc, type = 'b', main = 'Accuracy Comparison', xlab = 'Clusters', ylab = 'Acc')