pred.den {RHawkes} | R Documentation |
RHawkes predictive density function
Description
Calculates the predictive density of the next observed event time after the
censoring time cens
based on observations over the interval
[0,cens
].
Usage
pred.den(x, tms, cens, par,
h.fn = function(x, p) dexp(x, rate = 1 / p),
mu.fn = function(x, p) {
exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE))},
H.fn = function(x, p) pexp(x, rate = 1 / p),
Mu.fn = function(x, p) {
-pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE)
})
Arguments
x |
A scalar. The amount of time after the censoring time |
tms |
A numeric vector, with values sorted in ascending order. The event times to fit the RHawkes point process model. |
cens |
A scalar. The censoring time. |
par |
A numeric vector. Contains the parameters of the model, in order of the
immigration parameters |
h.fn |
A (vectorized) function. The offspring density function. |
mu.fn |
A (vectorized) function. The immigration hazard function. |
H.fn |
A (vectorized) function. Its value at |
Mu.fn |
A (vectorized) function. Its value at |
Value
The predictive density of the next event evaluated at x
.
Author(s)
Feng Chen <feng.chen@unsw.edu.au> Tom Stindl <t.stindl@unsw.edu.au>
Examples
data(quake);
tms <- sort(quake$time);
# add some random noise to the identical event times
tms[213:214] <- tms[213:214] +
sort(c(runif(1, -1, 1)/(24*60), runif(1, -1, 1)/(24*60)))
curve(pred.den(x, tms = tms, cens = 35064, par= c(0.314, 22.2, 1266, 0.512))
,0 ,2000, col = 2, lty = 2)