mllRH2 {RHawkes} | R Documentation |
Minus loglikelihood of a RHawkes model with Rosenblatt residuals
Description
Calculates the minus loglikelihood of a RHawkes model with given
immigration hazard function \mu
, offspring density function
h
and branching ratio \eta
for event times tms
on interval [0,cens]
. The same as mllRH
although this
version also returns the Rosenblatt residuals.
Usage
mllRH2(tms, cens, par, h.fn = function(x, p) dexp(x, rate = 1/p),
mu.fn = function(x, p) {
exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE))},
H.fn = function(x, p) pexp(x, rate = 1/p),
Mu.fn = function(x, p) {
-pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE)
})
Arguments
tms |
A numeric vector, with values sorted in ascending order. Event times to fit the RHawkes point process model. |
cens |
A scalar. The censoring time. |
par |
A numeric vector containing the parameters of the model, in order of the
immigration parameters |
h.fn |
A (vectorized) function. The offspring density function. |
mu.fn |
A (vectorized) function. The immigration hazard function. |
H.fn |
A (vectorized) function. Its value at |
Mu.fn |
A (vectorized) function. Its value at |
Details
Calculate the RHawkes point process Rosenblatt residuals
Value
mll |
minus log-likelihood |
U |
Rosenblatt residual of observed event time |
n |
number of events |
Author(s)
Feng Chen <feng.chen@unsw.edu.au> Tom Stindl <t.stindl@unsw.edu.au>
See Also
mllRH
Examples
## Not run:
tmp <- mllRH2(sort(runif(1000,0,1000)),1001,c(2,1,0.5,1))
par(mfrow=c(1,2))
qqunif<-function(dat,...){
dat<-sort(as.numeric(dat));
n<-length(dat);
pvec<-ppoints(n);
plot(pvec,dat,xlab="Theoretical Quantiles",
ylab="Sample Quantiles",main="Uniform Q-Q Plot",...)
}
qqunif(tmp$U)
acf(tmp$U)
ks.test(tmp$U,"punif")
## End(Not run)