mllRH {RHawkes} | R Documentation |
Minus loglikelihood of a RHawkes model
Description
Calculates the minus loglikelihood of a RHawkes model with given
immigration hazard function \mu
, offspring density function
h
and branching ratio \eta
for event times tms
on interval [0,cens]
.
Usage
mllRH(tms, cens, par,
h.fn = function(x, p) dexp(x, rate = 1 / p),
mu.fn = function(x, p) {
exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE))
},
H.fn = function(x, p) pexp(x, rate = 1 / p),
Mu.fn = function(x, p) {
-pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE)
})
Arguments
tms |
A numeric vector, with values sorted in ascending order. Event times to fit the RHawkes point process model. |
cens |
A scalar. The censoring time. |
par |
A numeric vector containing the parameters of the model, in order of the
immigration parameters |
h.fn |
A (vectorized) function. The offspring density function. |
mu.fn |
A (vectorized) function. The immigration hazard function. |
H.fn |
A (vectorized) function. Its value at |
Mu.fn |
A (vectorized) function. Its value at |
Value
The value of the negative log-likelihood.
Author(s)
Feng Chen <feng.chen@unsw.edu.au> Tom Stindl <t.stindl@unsw.edu.au>
Examples
## Not run:
## earthquake times over 96 years
data(quake);
tms <- sort(quake$time);
# add some random noise to the simultaneous occurring event times
tms[213:214] <- tms[213:214] +
sort(c(runif(1, -1, 1)/(24*60), runif(1, -1, 1)/(24*60)))
## calculate the minus loglikelihood of an RHawkes with some parameters
## the default hazard function and density functions are Weibull and
## exponential respectively
mllRH(tms, cens = 96*365.25 , par = c(0.5, 20, 1000, 0.5))
## calculate the MLE for the parameter assuming known parametric forms
## of the immigrant hazard function and offspring density functions.
system.time(est <- optim(c(0.5, 20, 1000, 0.5),
mllRH, tms = tms, cens = 96*365.25,
control = list(maxit = 5000, trace = TRUE),
hessian = TRUE)
)
## point estimate by MLE
est$par
## standard error estimates:
diag(solve(est$hessian))^0.5
## End(Not run)