rh.sd.bonferroni {RHSDB}R Documentation

Ryan-Holm Step-Down Bonferroni Procedure

Description

This procedure provides the adjusting p-values and adjusting CIs.

Usage

rh.sd.bonferroni(p,effect,effect.se,df,type,sig,side,digits)

Arguments

p

the raw p values

effect

the effect size from the multiple comparisons, e.g. the mean difference from t test or paried t test

effect.se

the standard error of effect size from the multiple comparisons, e.g. the standard error of mean difference from t test or paried t test)

df

the degree of freedom of hypothesis test, e.g. n1+n2-2 for t test, n-1 for paried t test

type

the type of the effect size, default is "mean"

sig

the significance level, default is 0.05

side

"one" or "two" sided hypothesis test

digits

the number of decimal digits

Value

p.adj

the adjusted p value

ci.adj.l

the lower limit of adjusted confidence interval

ci.adj.u

the upper limit of adjusted confidence interval

Note

Please feel free to contact us, if you have any advice and find any bug!

Reference:

1. John Ludbrook (2000). MULTIPLE INFERENCES USING CONFIDENCE INTERVALS. Clinical and Experimental Pharmacology and Physiology. 27: 212-215.

Update:

Version 0.1.0: The first version.

Version 0.2.0: Fix the bug for maintaining monotonicity of the ranking p-values.

See Also

rh.sd.sidak

Examples

p=c(0.217,0.00028,0,0.001,0.024,0.719,0.00033)
effect=c(16,74,-85,-38,29,5,91)
effect.se=c(12,16,14,9,12,16,20)
df=16
rh.sd.bonferroni(p,effect,effect.se,df)

[Package RHSDB version 0.2.0 Index]