RobVar {RGMM} | R Documentation |
RobVar
Description
Robust estimate of the variance
Usage
RobVar(X, c=2, alpha=0.75, model='Gaussian', methodMCM='Weiszfeld',
methodMC='Robbins' , mc_sample_size=1000, init=rep(0, ncol(X)),
init_cov=diag(ncol(X)),
epsilon=10^(-8), w=2, df=3, niterMC=50,
cgrad=2, niterWeisz=50, epsWeisz=10^-8, alphaMedian=0.75, cmedian=2)
Arguments
X |
A numeric matrix of whose rows correspond to observations. |
c |
A positive scalar giving the constant in the stepsequence of the Robbins-Monro or Gradient method if |
alpha |
A scalar between 1/2 and 1 giving the power in the stepsequence for the Robbins-Monro algorithm is |
model |
A string character specifying the model: can be |
methodMCM |
A string character specifying the method to estimate the Median Covariation Matrix. Can be |
methodMC |
A string character specifying the method to estimate robustly the variance. Can be |
mc_sample_size |
A positive integer giving the number of data simulated for the Monte-Carlo method. Default is |
init |
A numeric vector giving the initialization for estimating the median. |
init_cov |
A numeric matrix giving an initialization for estimating the Median Covariation Matrix. |
epsilon |
A positive scalar giving a stoping condition for algorithm. |
w |
A positive integer specifying the power for the weighted averaged Robbins-Monro algorithm if |
df |
An integer larger (or equal) than |
niterMC |
An integer giving the number of iterations for iterative algorithms if the selected method is |
cgrad |
A numeric vector with positive values giving the stepsequence of the gradient algorithm for estimating the variance if |
niterWeisz |
A positive integer giving the maximum number of iterations for the Weiszfeld algorithms if |
epsWeisz |
A stopping factor for the Weiszfeld algorithm. |
alphaMedian |
A scalar betwwen 1/2 and 1 giving the power of the stepsequence of the gradient algorithm for estimating the Median Covariation Matrix if |
cmedian |
A positive scalar giving the constant in the stepsequence of the gradient algorithm for estimating the Median Covariation Matrix if |
Value
An object of class list
with the following outputs:
median |
The median of |
variance |
The robust variance of |
median |
The Median Covariation Matrix of |
References
Cardot, H., Cenac, P. and Zitt, P-A. (2013). Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli, 19, 18-43.
Cardot, H. and Godichon-Baggioni, A. (2017). Fast Estimation of the Median Covariation Matrix with Application to Online Robust Principal Components Analysis. Test, 26(3), 461-480
Vardi, Y. and Zhang, C.-H. (2000). The multivariate L1-median and associated data depth. Proc. Natl. Acad. Sci. USA, 97(4):1423-1426.
See Also
Examples
n <- 2000
d <- 5
Sigma <-diag(1:d)
mean <- rep(0,d)
X <- mvtnorm::rmvnorm(n,mean,Sigma)
RVar=RobVar(X)