plot.rgcca {RGCCA}R Documentation

Plot a fitted object from the RGCCA package

Description

'plot.rgcca()' plots a fitted RGCCA object.

'plot.rgcca_cv()' plots a fitted rgcca_cv object. Boxplots of the cross-validated scores for the different parameter sets are displayed.

'plot.rgcca_permutation()' plots a fitted rgcca_permutation object. Permutation statistics are displayed for each set of parameters.

'plot.rgcca_bootstrap()' plots a fitted rgcca_bootstrap object. Each block variable is shown along with its associated bootstrap confidence interval and stars reflecting the p-value of assigning a strictly positive or negative weight to this block variable.

'plot.rgcca_stability()' calls 'plot.rgcca()' on the fitted RGCCA model returned by 'rgcca_stability()'.

Usage

## S3 method for class 'rgcca'
plot(
  x,
  type = "weights",
  block = seq_along(x$call$blocks),
  comp = c(1, 2),
  response = as.factor(rep(1, NROW(x$Y[[1]]))),
  display_order = TRUE,
  title = NULL,
  cex = 1,
  cex_sub = 12 * cex,
  cex_main = 14 * cex,
  cex_lab = 12 * cex,
  cex_point = 3 * cex,
  n_mark = 30,
  sample_colors = NULL,
  sample_shapes = NULL,
  var_colors = NULL,
  var_shapes = NULL,
  AVE_colors = NULL,
  show_sample_names = TRUE,
  show_var_names = TRUE,
  repel = FALSE,
  display_blocks = seq_along(x$call$blocks),
  expand = 1,
  show_arrows = TRUE,
  ...
)

## S3 method for class 'rgcca_cv'
plot(
  x,
  type = c("sd", "quantile"),
  cex = 1,
  cex_main = 14 * cex,
  cex_sub = 12 * cex,
  cex_point = 3 * cex,
  cex_lab = 12 * cex,
  display_order = TRUE,
  ...
)

## S3 method for class 'rgcca_permutation'
plot(
  x,
  type = c("crit", "zstat"),
  cex = 1,
  title = NULL,
  cex_main = 14 * cex,
  cex_sub = 12 * cex,
  cex_point = 3 * cex,
  cex_lab = 12 * cex,
  display_order = TRUE,
  show_legend = FALSE,
  ...
)

## S3 method for class 'rgcca_bootstrap'
plot(
  x,
  block = seq_along(x$rgcca$call$blocks),
  comp = 1,
  type = c("weights", "loadings"),
  empirical = TRUE,
  n_mark = 30,
  display_order = TRUE,
  show_stars = TRUE,
  title = NULL,
  cex = 1,
  cex_sub = 12 * cex,
  cex_main = 14 * cex,
  cex_lab = 12 * cex,
  cex_point = 3 * cex,
  colors = NULL,
  adj.method = "fdr",
  ...
)

## S3 method for class 'rgcca_stability'
plot(x, ...)

Arguments

x

An object to be plotted (output of functions rgcca, rgcca_cv, rgcca_permutation, rgcca_bootstrap, or rgcca_stability).

type

A character string indicating the type of plot (see details).

block

A numeric corresponding to the block(s) to plot.

comp

A numeric vector indicating the component(s) to consider.

response

A vector coloring the points in the "samples" plot.

display_order

A logical value for ordering the variables. If TRUE, variables are ordered from highest to lowest absolute value. If FALSE, the block order is used. Default is TRUE.

title

A string specifying the title of the plot.

cex

A numeric defining the size of the objects in the plot. Default is one.

cex_sub

A numeric defining the font size of the subtitle. Default is 12 * cex.

cex_main

A numeric defining the font size of the title. Default is 14 * cex.

cex_lab

A numeric defining the font size of the labels. Default is 12 * cex.

cex_point

A numeric defining the font size of the points. Default is 3 * cex.

n_mark

An integer defining the maximum number plotted objects (see details).

sample_colors

A string specifying the colors used to color samples (used in the "samples" and "biplot" plots).

sample_shapes

Shapes used for the sample points (used in the "samples" and "biplot" plots).

var_colors

Colors used to color variable weights or correlations with canonical components (used in the "weights", "loadings", "cor_circle" and "biplot" plots).

var_shapes

Shapes used for the points associated to variable weights or correlations with canonical components (used in the "cor_circle" and "biplot" plots).

AVE_colors

Colors used in the AVE plot.

show_sample_names

A logical value for showing the sample names in plots "samples" and "biplot".

show_var_names

A logical value for showing the variable names in plots "cor_circle" and "biplot".

repel

A logical value for repelling text labels from each other. Default to FALSE.

display_blocks

A numeric corresponding to the block(s) to display in the correlation_circle. All blocks are displayed by default.

expand

A numeric that scales the weights associated to the block variables in the biplot. Default is 1.

show_arrows

A logical, if TRUE, arrows are shown in the biplot. Default is FALSE.

...

Additional graphical parameters.

show_legend

A logical value indicating if legend should be shown (default is FALSE).

empirical

A logical value indicating if the bootstrap confidence intervals and p-values are derived from the empirical distribution. (default: TRUE)

show_stars

A logical value indicating if the significance levels are displayed.

colors

Colors used in the plots.

adj.method

A string indicating the method used to adjust the p-values. It must be a method handled by the p.adjust function. Default is "fdr".

Details

Argument type can take 7 values in 'plot.rgcca':

Argument type can take 2 values in 'plot.rgcca_cv':

Argument type can take 2 values in 'plot.rgcca_permutation':

Argument type can take 2 values in 'plot.rgcca_bootstrap':

Value

A ggplot2 plot object.

Examples

## Plotting of an rgcca object
data("Russett")
blocks <- list(
  agriculture = Russett[, seq(3)],
  industry = Russett[, 4:5],
  politic = as.factor(apply(Russett[, 9:11], 1, which.max))
)
blocks2 <- list(
  agriculture = Russett[, seq(3)],
  industry = Russett[, 4:5],
  politic = Russett[, 6:11]
)
status <- colnames(Russett)[9:11][apply(Russett[, 9:11], 1, which.max)]
fit_rgcca <- rgcca(blocks = blocks, response = 3, ncomp = 2)

plot(fit_rgcca, type = "sample", block = 1:2, comp = 1)
plot(fit_rgcca, type = "loadings")
plot(fit_rgcca, type = "weight")
plot(fit_rgcca, type = "sample")
plot(fit_rgcca, type = "cor_circle")
plot(fit_rgcca, type = "both")
plot(fit_rgcca, type = "biplot")
plot(fit_rgcca, type = "ave")

## Not run: 
# With a superblock
fit_mcoa <- rgcca(blocks = blocks2, method = "mcoa", ncomp = 2)

plot(fit_mcoa, type = "both", response = status)
plot(fit_mcoa, type = "biplot", response = status)

## Plotting of an rgcca_cv object
cv_out <- rgcca_cv(blocks,
  response = 3, method = "rgcca",
  par_type = "tau",
  par_value = 1,
  n_run = 1, n_cores = 1,
  prediction_model = "lda",
  metric = "Accuracy",
  verbose = TRUE
)

plot(cv_out, type = "sd")
plot(cv_out, type = "quantile")

## Ploting of an rgcca_permutation object
perm_out <- rgcca_permutation(blocks2, par_type = "tau",
                              n_perms = 2, n_cores = 1)

plot(perm_out, type = "crit")
plot(perm_out, type = "zstat")

## Plotting of an rgcca_bootstrap object
boot_out <- rgcca_bootstrap(fit_rgcca, n_boot = 20, n_cores = 1)
plot(boot_out, type = "weights", block = 1, comp = 1)
plot(boot_out, type = "loadings", comp = 2,
     display_order = FALSE, show_stars = FALSE)

## Plotting of an rgcca_stability object
fit.sgcca <- rgcca(blocks2, sparsity = c(.8, .9, .6))
res <- rgcca_stability(
  fit.sgcca, n_boot = 10, verbose = TRUE, keep = rep(.1, 3)
)

plot(res, type = "samples")

## End(Not run)


[Package RGCCA version 3.0.3 Index]