add_names | Add row and column names to the adjacency matrix A |
apply_row_deviation | Apply row-wise deviation on the inferred GRN |
consider_previous_information | Remember the intermediate inferred GRN while generating the final inferred GRN |
first_GBM_step | Perform either LS-Boost or LAD-Boost ('GBM') on expression matrix E followed by the 'null_model_refinement_step' |
GBM | Calculate Gene Regulatory Network from Expression data using either LS-TreeBoost or LAD-TreeBoost |
GBM.test | Test GBM predictor |
GBM.train | Train GBM predictor |
get_colids | Get the indices of recitifed list of Tfs for individual target gene |
get_filepaths | Generate filepaths to maintain adjacency matrices and images |
get_ko_experiments | Get indices of experiments where knockout or knockdown happened |
get_tf_indices | Get the indices of all the TFs from the data |
normalize_matrix_colwise | Column normalize the obtained adjacency matrix |
null_model_refinement_step | Perform the null model refinement step |
regularized_GBM_step | Perform the regularized GBM modelling once the initial GRN is inferred |
regulate_regulon_size | Regulate the size of the regulon for each TF |
RGBM | Regularized Gradient Boosting Machine for inferring GRN |
RGBM.test | Test rgbm predictor |
RGBM.train | Train RGBM predictor |
second_GBM_step | Re-iterate through the core GBM model building with optimal set of Tfs for each target gene |
select_ideal_k | Identifies the optimal value of k i.e. top k Tfs for each target gene |
test_regression_stump_R | Test the regression model |
train_regression_stump_R | Train the regression stump |
transform_importance_to_weights | Log transforms the edge-weights in the inferred GRN |
v2l | Convert adjacency matrix to a list of edges |
z_score_effect | Generates a matrix S2 of size Ntfs x Ntargets using the null-mutant zscore algorithm Prill, Robert J., et al |