fit.KuttnerModel {RGAP} | R Documentation |
Maximum likelihood estimation of a KuttnerModel
Description
Estimates a two-dimensional state-space model and performs filtering and smoothing to obtain the output gap.
Usage
## S3 method for class 'KuttnerModel'
fit(
model,
parRestr = initializeRestr(model),
signalToNoise = NULL,
control = NULL,
...
)
Arguments
model |
An object of class KuttnerModel. |
parRestr |
A list of matrices containing the parameter restrictions for the cycle,
trend, and the inflation equation. Each matrix contains the lower and upper bound of the
involved parameters. |
signalToNoise |
(Optional) signal to noise ratio. |
control |
(Optional) A list of control arguments to be passed on to |
... |
additional arguments to be passed to the methods functions. |
Value
An object of class KuttnerFit
containing the following components:
model |
The input object of class |
SSMfit |
The estimation output from the funtcion |
SSMout |
The filtering and smoothing output from the funtcion |
parameters |
A data frame containing the estimated parameters, including standard errors, t-statistics, and p-values. |
fit |
A list of model fit criteria (see below). |
call |
Original call to the function. |
The list component fit
contains the following model fit criteria:
loglik |
Log-likelihood function value. |
AIC |
Akaike information criterion. |
BIC |
Bayesian information criterion. |
AIC |
Hannan-Quinn information criterion. |
RMSE |
Root mean squared error of the inflation equation. |
R2 |
R squared of the inflation equation. |
LjungBox |
Ljung-Box test output of the inflation equation. |
See Also
Other fitting methods:
fit.NAWRUmodel()
,
fit.TFPmodel()
,
fit()
Examples
# load data for the Netherlands
data("gap")
country <- "Netherlands"
tsList <- as.list(gap[[country]][, c("cpih", "gdp")])
tsList$infl <- diff(tsList$cpih)
model <- KuttnerModel(tsl = tsList, trend = "RW2", cycleLag = 1, cycle = "AR2", start = 1980)
# estimate Kutter's model
parRestr <- initializeRestr(model = model, type = "hp")
gapKuttner <- fit(model, parRestr, signalToNoise = 1 / 10)