| fit.KuttnerModel {RGAP} | R Documentation | 
Maximum likelihood estimation of a KuttnerModel
Description
Estimates a two-dimensional state-space model and performs filtering and smoothing to obtain the output gap.
Usage
## S3 method for class 'KuttnerModel'
fit(
  model,
  parRestr = initializeRestr(model),
  signalToNoise = NULL,
  control = NULL,
  ...
)
Arguments
model | 
 An object of class KuttnerModel.  | 
parRestr | 
 A list of matrices containing the parameter restrictions for the cycle,
trend, and the inflation equation. Each matrix contains the lower and upper bound of the
involved parameters.   | 
signalToNoise | 
 (Optional) signal to noise ratio.  | 
control | 
 (Optional) A list of control arguments to be passed on to   | 
... | 
 additional arguments to be passed to the methods functions.  | 
Value
An object of class KuttnerFit containing the following components:
model | 
 The input object of class   | 
SSMfit | 
 The estimation output from the funtcion   | 
SSMout | 
 The filtering and smoothing output from the funtcion   | 
parameters | 
 A data frame containing the estimated parameters, including standard errors, t-statistics, and p-values.  | 
fit | 
 A list of model fit criteria (see below).  | 
call | 
 Original call to the function.  | 
The list component fit contains the following model fit criteria:
loglik | 
 Log-likelihood function value.  | 
AIC | 
 Akaike information criterion.  | 
BIC | 
 Bayesian information criterion.  | 
AIC | 
 Hannan-Quinn information criterion.  | 
RMSE | 
 Root mean squared error of the inflation equation.  | 
R2 | 
 R squared of the inflation equation.  | 
LjungBox | 
 Ljung-Box test output of the inflation equation.  | 
See Also
Other fitting methods: 
fit.NAWRUmodel(),
fit.TFPmodel(),
fit()
Examples
# load data for the Netherlands
data("gap")
country <- "Netherlands"
tsList <- as.list(gap[[country]][, c("cpih", "gdp")])
tsList$infl <- diff(tsList$cpih)
model <- KuttnerModel(tsl = tsList, trend = "RW2", cycleLag = 1, cycle = "AR2", start = 1980)
# estimate Kutter's model
parRestr <- initializeRestr(model = model, type = "hp")
gapKuttner <- fit(model, parRestr, signalToNoise = 1 / 10)