Kaiser-Meyer-Olkin-Statistics {REdaS} | R Documentation |
Kaiser-Meyer-Olkin Statistics
Description
description
Usage
KMOS(x, use = c("everything", "all.obs", "complete.obs", "na.or.complete",
"pairwise.complete.obs"))
## S3 method for class 'MSA_KMO'
print(x, stats = c("both", "MSA", "KMO"), vars = "all",
sort = FALSE, show = "all", digits = getOption("digits"), ...)
Arguments
x |
The data |
use |
defines the method to use if missing values are present (for a detailed explanation see |
stats |
determines if |
vars |
can be |
sort |
sorts the MSAs in increasing order. |
show |
shows the specified number of variables (from 1 to the number of potentially sorted variables). |
digits |
the number of decimal places to print. |
... |
further arguments. |
Details
The Measure of Sampling Adequacy (MSA) for individual items and the Kaiser-Meyer-Olkin (KMO) Criterion rely on the Anti-Image-Correlation Matrix \mathbf{A}
(for details see Kaiser & Rice, 1974) that contains all bivariate partial correlations given all other items in the a_{ij}=r_{ij\,\vert\,\mathbf{X}\setminus\{i,\,j\}}
which is:
\mathbf{A}=\left[\mathrm{diag}(\mathbf{R}^{-1})\right]^{-1/2}\,\mathbf{R}^{-1}\,\left[\mathrm{diag}(\mathbf{R}^{-1})\right]^{-1/2}
where \mathbf{R}
is the correlation matrix, based on the data \mathbf{X}
.
The KMO and MSAs for individual items are (adapted from Equations (3) and (4) in Kaiser & Rice, 1974; note that a
is q
in the article):
\mathit{KMO}=\frac{\sum_{i=1}^{k}\sum_{j=1}^{k}r_{ij}^2}{\sum_{i=1}^{k}\sum_{j=1}^{k}r_{ij}^2+a_{ij}^2},\qquad i\neq j
\mathit{MSA}_i=\frac{\sum_{j=1}^{k}r_{ij}^2}{\sum_{j=1}^{k}r_{ij}^2+a_{ij}^2},\qquad j\neq i
Historically, as suggested in Kaiser (1974) and Kaiser & Rice (1974), a rule of thumb for those values is:
\geq{}.9 | marvelous |
[.8,\,.9) | meritorious |
[.7,\,.8) | middling |
[.6,\,.7) | mediocre |
[.5,\,.6) | miserable |
<.5 | unacceptable |
Value
A list of class 'MSA_KMO'
call |
the issued function call |
cormat |
correlation matrix |
pcormat |
normalized negative inverse of the correlation matrix (pairwise correlations given all other variables) |
n |
the number of observations |
k |
the number of variables/items |
MSA |
measure of sampling adequacy |
KMO |
Kaiser-Meyer-Olkin criterion |
Author(s)
Marco J. Maier
References
Kaiser, H. F. (1970). A Second Generation Little Jiffy. Psychometrika, 35(4), 401–415.
Kaiser, H. F. (1974). An Index of Factorial Simplicity. Psychometrika, 39(1), 31–36.
Kaiser, H. F., & Rice, J. (1974). Little Jiffy, Mark IV. Educational and Psychological Measurement, 34, 111–117.
See Also
Examples
set.seed(5L)
daten <- data.frame("A"=rnorm(100), "B"=rnorm(100), "C"=rnorm(100),
"D"=rnorm(100), "E"=rnorm(100))
cor(daten)
KMOS(daten, use = "pairwise.complete.obs")