f2S {RESI} | R Documentation |
Compute the robust effect size index estimate from F-statistic
Description
This function computes the robust effect size index from Vandekar, Tao, & Blume (2020). Vector arguments are accepted. If different length arguments are passed they are dealt with in the usual way of R.
Usage
f2S(f, df, rdf, n)
Arguments
f |
The F statistic for the parameter of interest. |
df |
Number of degrees of freedom of the F statistic. |
rdf |
Model residual degrees of freedom. |
n |
Number of independent samples. |
Details
The formula for converting an F statistic to S is:
S = \sqrt(max(0, (f * df * (rdf - 2)/rdf - df)/n))
The estimator is derived by setting the statistic equal to the expected value of the test statistic and solving for S.
Value
Returns a scalar or vector argument of the the robust effect size index estimate.
Examples
# to obtain example F values, first fit a lm
mod = lm(charges ~ region * age + bmi + sex, data = RESI::insurance)
# run Anova, using a robust variance-covariance function
# get the F values and Df values
fs = car::Anova(mod, vcov. = sandwich::vcovHC)[1:5, "F"]
dfs = car::Anova(mod, vcov. = sandwich::vcovHC)[1:5, "Df"]
# get RESI estimates
f2S(fs, df = dfs, rdf = mod$df.residual, n = nrow(RESI::insurance))
[Package RESI version 1.2.4 Index]