replace_nas_with_explicit {REDCapR} | R Documentation |
Create explicit factor level for missing values
Description
Missing values are converted to a factor level. This explicit assignment can reduce the chances that missing values are inadvertently ignored. It also allows the presence of a missing to become a predictor in models.
Usage
replace_nas_with_explicit(
scores,
new_na_label = "Unknown",
create_factor = FALSE,
add_unknown_level = FALSE
)
Arguments
scores |
An array of values, ideally either factor or character. Required |
new_na_label |
The factor label assigned to the missing value.
Defaults to |
create_factor |
Converts |
add_unknown_level |
Should a new factor level be created?
(Specify |
Value
An array of values, where the NA
values are now a factor level,
with the label specified by the new_na_label
value.
Note
The create_factor
parameter is respected only if scores
isn't already
a factor. Otherwise, levels without any values would be lost.
A stop
error will be thrown if the operation fails to convert all the
NA
values.
Author(s)
Will Beasley
Examples
library(REDCapR) #Load the package into the current R session.