HLmix {REBayes} | R Documentation |
Kiefer-Wolfowitz NPMLE for Huber Location Mixtures
Description
Kiefer Wolfowitz Nonparametric MLE for Huber Location Mixtures
Usage
HLmix(x, v = 300, sigma = 1, k = 1.345, heps = hubereps(k), ...)
Arguments
x |
Data: Sample Observations |
v |
Undata: Grid Values defaults equal spacing of with v bins, when v is a scalar |
sigma |
scale parameter of the Gaussian noise, may take vector values of length(x) |
k |
Huber k value |
heps |
Huber epsilon contamination value, should match k, by default this is automatically enforced. |
... |
other parameters to pass to KWDual to control optimization |
Details
Kiefer Wolfowitz NPMLE for location mixtures with Huber (1964) base density
The Huber k
specifies the point at which the influence function of
the Huber M-estimator kinks.
The predict method for HLmix
objects compute means, medians or
modes of the posterior according to whether the Loss
argument is 2, 1
or 0, or posterior quantiles if Loss
is in (0,1).
Value
An object of class density with components:
x |
points of evaluation on the domain of the density |
y |
estimated function values at the points v, the mixing density |
g |
marginal density values |
logLik |
log likelihood |
sigma |
sigma |
dy |
posterior means at the observed |
k |
Huber k |
heps |
Huber epsilon |
Author(s)
Roger Koenker