gini.spec {REAT} | R Documentation |
Gini coefficient of regional specialization
Description
Calculating the Gini coefficient of regional specialization based on regional industry data (normally employment data)
Usage
gini.spec(e_ij, e_i, lc = FALSE, lcx = "% of objects",
lcy = "% of regarded variable", lctitle = "Lorenz curve",
le.col = "blue", lc.col = "black", lsize = 1, ltype = "solid",
bg.col = "gray95", bgrid = TRUE, bgrid.col = "white",
bgrid.size = 2, bgrid.type = "solid", lcg = FALSE, lcgn = FALSE,
lcg.caption = NULL, lcg.lab.x = 0, lcg.lab.y = 1,
add.lc = FALSE, plot.lc = TRUE)
Arguments
e_ij |
a numeric vector with the employment of the industries |
e_i |
a numeric vector with the employment in the industries |
lc |
logical argument that indicates if the Lorenz curve is plotted additionally (default: |
lcx |
if |
lcy |
if |
lctitle |
if |
le.col |
if |
lc.col |
if |
lsize |
if |
ltype |
if |
bg.col |
if |
bgrid |
if |
bgrid.col |
if |
bgrid.size |
if |
bgrid.type |
if |
lcg |
if |
lcgn |
if |
lcg.caption |
if |
lcg.lab.x |
if |
lcg.lab.y |
if |
add.lc |
if |
plot.lc |
logical argument that indicates if the Lorenz curve itself is plotted (if |
Details
The Gini coefficient of regional specialization () is a special spatial modification of the Gini coefficient of inequality (see the function
gini()
). It represents the degree of regional specialization of the region referring to
industries. The coefficient
varies between 0 (no specialization) and 1 (complete specialization). Optionally a Lorenz curve is plotted (if
lc = TRUE
).
Value
A single numeric value ()
Author(s)
Thomas Wieland
References
Farhauer, O./Kroell, A. (2013): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.
Nakamura, R./Morrison Paul, C. J. (2009): “Measuring agglomeration”. In: Capello, R./Nijkamp, P. (eds.): Handbook of Regional Growth and Development Theories. Cheltenham: Elgar. p. 305-328.
See Also
Examples
# Example from Farhauer/Kroell (2013):
E_ij <- c(700,600,500,10000,40000)
# employment of five industries in the region
E_i <- c(30000,15000,10000,60000,50000)
# over-all employment in the five industries
gini.spec (E_ij, E_i)
# Returns the Gini coefficient of regional specialization (0.6222222)
# Example Freiburg
data(Freiburg)
# Loads the data
E_ij <- Freiburg$e_Freiburg2014
# industry-specific employment in Freiburg 2014
E_i <- Freiburg$e_Germany2014
# industry-specific employment in Germany 2014
gini.spec (E_ij, E_i)
# Returns the Gini coefficient of regional specialization (0.2089009)
# Example Goettingen
data(Goettingen)
# Loads the data
gini.spec(Goettingen$Goettingen2017[2:16], Goettingen$BRD2017[2:16])
# Returns the Gini coefficient of regional specialization 2017 (0.359852)