gini.conc {REAT} | R Documentation |
Gini coefficient of spatial industry concentration
Description
Calculating the Gini coefficient of spatial industry concentration based on regional industry data (normally employment data)
Usage
gini.conc(e_ij, e_j, lc = FALSE, lcx = "% of objects",
lcy = "% of regarded variable", lctitle = "Lorenz curve",
le.col = "blue", lc.col = "black", lsize = 1, ltype = "solid",
bg.col = "gray95", bgrid = TRUE, bgrid.col = "white",
bgrid.size = 2, bgrid.type = "solid", lcg = FALSE, lcgn = FALSE,
lcg.caption = NULL, lcg.lab.x = 0, lcg.lab.y = 1,
add.lc = FALSE, plot.lc = TRUE)
Arguments
e_ij |
a numeric vector with the employment of the industry |
e_j |
a numeric vector with the employment in region |
lc |
logical argument that indicates if the Lorenz curve is plotted additionally (default: |
lcx |
if |
lcy |
if |
lctitle |
if |
le.col |
if |
lc.col |
if |
lsize |
if |
ltype |
if |
bg.col |
if |
bgrid |
if |
bgrid.col |
if |
bgrid.size |
if |
bgrid.type |
if |
lcg |
if |
lcgn |
if |
lcg.caption |
if |
lcg.lab.x |
if |
lcg.lab.y |
if |
add.lc |
if |
plot.lc |
logical argument that indicates if the Lorenz curve itself is plotted (if |
Details
The Gini coefficient of spatial industry concentration () is a special spatial modification of the Gini coefficient of inequality (see the function
gini()
). It represents the rate of spatial concentration of the industry referring to
regions (e.g. cities, counties, states). The coefficient
varies between 0 (perfect distribution, respectively no concentration) and 1 (complete concentration in one region). Optionally a Lorenz curve is plotted (if
lc = TRUE
).
Value
A single numeric value ()
Author(s)
Thomas Wieland
References
Farhauer, O./Kroell, A. (2013): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.
Nakamura, R./Morrison Paul, C. J. (2009): “Measuring agglomeration”. In: Capello, R./Nijkamp, P. (eds.): Handbook of Regional Growth and Development Theories. Cheltenham: Elgar. p. 305-328.
See Also
Examples
# Example from Farhauer/Kroell (2013):
E_ij <- c(500,500,1000,7000,1000)
# employment of the industry in five regions
E_j <- c(20000,15000,20000,40000,5000)
# employment in the five regions
gini.conc (E_ij, E_j)
# Returns the Gini coefficient of industry concentration (0.4068966)
data(G.regions.emp)
# Concentration of construction industry in Germany
# based on 16 German regions (Bundeslaender) for the year 2008
construction2008 <- G.regions.emp[(G.regions.emp$industry == "Baugewerbe (F)" |
G.regions.emp$industry == "Insgesamt") & G.regions.emp$year == "2008",]
# only data for construction industry (Baugewerbe) and all-over (Insgesamt)
# for the 16 German regions in the year 2008
construction2008 <- construction2008[construction2008$region != "Insgesamt",]
# delete all-over data for all industries
gini.conc(construction2008[construction2008$industry=="Baugewerbe (F)",]$emp,
construction2008[construction2008$industry=="Insgesamt",]$emp)
# Concentration of financial industry in Germany 2008 vs. 2014
# based on 16 German regions (Bundeslaender) for 2008 and 2014
finance2008 <- G.regions.emp[(G.regions.emp$industry ==
"Erbringung von Finanz- und Vers.leistungen (K)" |
G.regions.emp$industry == "Insgesamt") & G.regions.emp$year == "2008",]
finance2008 <- finance2008[finance2008$region != "Insgesamt",]
# delete all-over data for all industries
gini.conc(finance2008[finance2008$industry ==
"Erbringung von Finanz- und Vers.leistungen (K)",]$emp,
finance2008[finance2008$industry=="Insgesamt",]$emp)
finance2014 <- G.regions.emp[(G.regions.emp$industry ==
"Erbringung von Finanz- und Vers.leistungen (K)" | G.regions.emp$industry ==
"Insgesamt") & G.regions.emp$year == "2014",]
finance2014 <- finance2014[finance2014$region != "Insgesamt",]
# delete all-over data for all industries
gini.conc(finance2014[finance2014$industry ==
"Erbringung von Finanz- und Vers.leistungen (K)",]$emp,
finance2014[finance2014$industry=="Insgesamt",]$emp)