gifpro {REAT} | R Documentation |
Commercial area prognosis
Description
This function contains the basic GIFPRO model for commercial area prognosis (GIFPRO = Gewerbe- und Industrieflaechenprognose)
Usage
gifpro(e_ij, a_i, sq_ij, rq_ij, ru_ij = NULL, ai_ij, time.base, tinterval = 1,
industry.names = NULL, output = "short")
Arguments
e_ij |
a numeric vector with |
a_i |
a numeric vector with |
sq_ij |
a numeric vector with |
rq_ij |
a numeric vector with |
ru_ij |
a numeric vector with |
ai_ij |
a numeric vector with |
time.base |
a single value representing the start time of the prognose (typically current year + 1) |
tinterval |
a single value representing the forecast horizon (length of time into the future for which the commercial area prognosis is done), in time units (e.g. |
industry.names |
a vector containing the industry names (e.g. from the relevant statistical classification of economic activities) |
output |
Type of output: |
Details
In municipal land use planning (mostly in Germany), the future need of local commercial area (which is a type of land use, defined in official land-use plans) is mostly forecasted by models founded on the GIFPRO model (Gewerbe- und Industrieflaechenbedarfsprognose, prognosis of future demand of commercial area). GIFPRO is a demand-side model, which means predicting the demand of commercial area based on a prognosis of future employment in different industries (Bonny/Kahnert 2005). The key parameters of the model are the (assumed) shares of employees located in commercial areas (a_i
), the (assumed) quotas of resettlement (sq_{ij}
), relocation (rq_{ij}
) and (sometimes) reuse (ru_{ij}
) as well as the (assumed) area requirement per employee (ai_{ij}
). Outgoing from current employment in i
industries in region j
, e_{ij}
, the future employment is predicted based on the quotas mentioned above and, finally, multiplied by the industry-specific (and maybe region-specific) areal index. The GIFPRO model has been modified and extended several times, especially with respect to industry- and region-specific employment growth, quotas and areal indices (Deutsches Institut fuer Urbanistik 2010, Vallee et al. 2012).
Value
A list
containing the following objects:
components |
Matrices containing the single components (resettlement, relocation, reuse, relevant employment) |
results |
Matrices containing the final results per year and all over |
Author(s)
Thomas Wieland
References
Bonny, H.-W./Kahnert, R. (2005): “Zur Ermittlung des Gewerbeflaechenbedarfs: Ein Vergleich zwischen einer Monitoring gestuetzten Prognose und einer analytischen Bestimmung”. In: Raumforschung und Raumordnung, 63, 3, p. 232-240.
Deutsches Institut fuer Urbanistik (ed.) (2010): “Stadtentwicklungskonzept Gewerbe fuer die Landeshauptstadt Potsdam”. Berlin. https://www.potsdam.de/sites/default/files/documents/STEK_Gewerbe_Langfassung_2010.pdf (accessed October 13, 2017).
Vallee, D./Witte, A./Brandt, T./Bischof, T. (2012): “Bedarfsberechnung fuer die Darstellung von Allgemeinen Siedlungsbereichen (ASB) und Gewerbe- und Industrieansiedlungsbereichen (GIB) in Regionalplaenen”. Im Auftrag der Staatskanzlei des Landes Nordrhein-Westfalen. Abschlussbericht Oktober 2012. Aachen.
See Also
gifpro.tbs
, portfolio
, shift
, shiftd
, shifti
Examples
# Data for the city Kempten (2012):
emp2012 <- c(7228, 12452, 11589)
sharesCA <- c(100, 40, 10)
rsquote <- c(0.3, 0.3, 0.3)
rlquote <- c(0.7, 0.7, 0.7)
arealindex <- c(148, 148, 148)
industries <- c("Manufacturing", "Wholesale and retail trade, Transportation
and storage, Information and communication", "Other services")
gifpro (e_ij = emp2012, a_i = sharesCA, sq_ij = rsquote,
rq_ij = rlquote, ai_ij = arealindex, time.base = 2012,
tinterval = 13, industry.names = industries, output = "short")
# short output
gifpro (e_ij = emp2012, a_i = sharesCA, sq_ij = rsquote,
rq_ij = rlquote, ai_ij = arealindex, time.base = 2012,
tinterval = 13, industry.names = industries, output = "full")
# full output
gifpro_results <- gifpro (e_ij = emp2012, a_i = sharesCA, sq_ij = rsquote,
rq_ij = rlquote, ai_ij = arealindex, time.base = 2012,
tinterval = 13, industry.names = industries, output = "short")
# saving results as gifpro object
gifpro_results$components
# single components
gifpro_results$results
# results (as shown in full output)