ellison.a {REAT} | R Documentation |
Ellison-Glaeser Agglomeration Index
Description
Calculating the Agglomeration Index by Ellison and Glaeser for a single industry i
Usage
ellison.a(e_ik, e_j, regions, print.results = TRUE)
Arguments
e_ik |
a numeric vector containing the no. of employees of firm |
e_j |
a numeric vector containing the no. of employees in the regions |
regions |
a vector containing the IDs/names of the regions |
print.results |
logical argument that indicates whether the function prints the results or not (only for internal use) |
Details
The Ellison-Glaeser Agglomeration Index is not standardized. A value of \gamma_i = 0
indicates a spatial distribution of firms equal to a dartboard approach. Values below zero indicate spatial dispersion, values greater than zero indicate clustering.
Value
A matrix with five columns (\gamma_i
, G_i
, z_{G_i}
, K_i
and HHI_i
).
Author(s)
Thomas Wieland
References
Ellison G./Glaeser, E. (1997): “Geographic concentration in u.s. manufacturing industries: A dartboard approach”. In: Journal of Political Economy, 105, 5, p. 889-927.
Farhauer, O./Kroell, A. (2014): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.
Nakamura R./Morrison Paul, C. (2009): “Measuring agglomeration”. In: Capello, R./Nijkamp, P. (eds): Handbook of Regional Growth and Development Theories, p. 305-328.
See Also
gini.conc
, gini.spec
, locq
, locq2
, howard.cl
, howard.xcl
, howard.xcl2
, litzenberger
, litzenberger2
Examples
# Example from Farhauer/Kroell (2014):
j <- c("Wien", "Wien", "Wien", "Wien", "Wien", "Linz",
"Linz", "Linz", "Linz", "Graz")
E_ik <- c(200,650,12000,100,50,16000,13000,1500,1500,25000)
E_j <- c(500000,400000,100000)
ellison.a(E_ik, E_j, j)
# 0.05990628