Automotive {REAT} | R Documentation |
Automotive industry data
Description
Top 20 automotive industry companies, including their manufacturing quantity and turnovers (Table from wikipedia)
Usage
data("Automotive")
Format
A data frame with 20 observations on the following 8 variables.
Rank
Rank of the company
Company
Name of the company (German)
Country
Origin county of the company (German)
Quantity2014
Quantity of produced vehicles in 2014
Quantity2014_car
Quantity of produced cars in 2014
Turnover2008
Annual turnover 2008 (in billion dollars)
Turnover2012
Annual turnover 2012 (in billion dollars)
Turnover2013
Annual turnover 2013 (in billion dollars)
Source
Wikipedia (2018): “Automobilindustrie — Wikipedia, Die freie Enzyklopaedie”. https://de.wikipedia.org/wiki/Automobilindustrie (accessed October 14, 2018). Own postprocessing.
References
Wikipedia (2018): “Automobilindustrie — Wikipedia, Die freie Enzyklopaedie”. https://de.wikipedia.org/wiki/Automobilindustrie (accessed October 14, 2018).
Examples
# Market concentration in automotive industry
data(Automotive)
gini(Automotive$Turnover2008, lsize=1, lc=TRUE, le.col = "black",
lc.col = "orange", lcx = "Shares of companies", lcy = "Shares of turnover / cars",
lctitle = "Automotive industry: market concentration",
lcg = TRUE, lcgn = TRUE, lcg.caption = "Turnover 2008:", lcg.lab.x = 0, lcg.lab.y = 1)
# Gini coefficient and Lorenz curve for turnover 2008
gini(Automotive$Turnover2013, lsize=1, lc = TRUE, add.lc = TRUE, lc.col = "red",
lcg = TRUE, lcgn = TRUE, lcg.caption = "Turnover 2013:", lcg.lab.x = 0, lcg.lab.y = 0.85)
# Adding Gini coefficient and Lorenz curve for turnover 2013
gini(Automotive$Quantity2014_car, lsize=1, lc = TRUE, add.lc = TRUE, lc.col = "blue",
lcg = TRUE, lcgn = TRUE, lcg.caption = "Cars 2014:", lcg.lab.x = 0, lcg.lab.y = 0.7)
# Adding Gini coefficient and Lorenz curve for cars 2014