| Automotive {REAT} | R Documentation | 
Automotive industry data
Description
Top 20 automotive industry companies, including their manufacturing quantity and turnovers (Table from wikipedia)
Usage
data("Automotive")Format
A data frame with 20 observations on the following 8 variables.
- Rank
- Rank of the company 
- Company
- Name of the company (German) 
- Country
- Origin county of the company (German) 
- Quantity2014
- Quantity of produced vehicles in 2014 
- Quantity2014_car
- Quantity of produced cars in 2014 
- Turnover2008
- Annual turnover 2008 (in billion dollars) 
- Turnover2012
- Annual turnover 2012 (in billion dollars) 
- Turnover2013
- Annual turnover 2013 (in billion dollars) 
Source
Wikipedia (2018): “Automobilindustrie — Wikipedia, Die freie Enzyklopaedie”. https://de.wikipedia.org/wiki/Automobilindustrie (accessed October 14, 2018). Own postprocessing.
References
Wikipedia (2018): “Automobilindustrie — Wikipedia, Die freie Enzyklopaedie”. https://de.wikipedia.org/wiki/Automobilindustrie (accessed October 14, 2018).
Examples
# Market concentration in automotive industry
data(Automotive)
gini(Automotive$Turnover2008, lsize=1, lc=TRUE, le.col = "black", 
lc.col = "orange", lcx = "Shares of companies", lcy = "Shares of turnover / cars", 
lctitle = "Automotive industry: market concentration", 
lcg = TRUE, lcgn = TRUE, lcg.caption = "Turnover 2008:", lcg.lab.x = 0, lcg.lab.y = 1)
# Gini coefficient and Lorenz curve for turnover 2008
gini(Automotive$Turnover2013, lsize=1, lc = TRUE, add.lc = TRUE, lc.col = "red", 
lcg = TRUE, lcgn = TRUE, lcg.caption = "Turnover 2013:", lcg.lab.x = 0, lcg.lab.y = 0.85)
# Adding Gini coefficient and Lorenz curve for turnover 2013
gini(Automotive$Quantity2014_car, lsize=1, lc = TRUE, add.lc = TRUE, lc.col = "blue", 
lcg = TRUE, lcgn = TRUE, lcg.caption = "Cars 2014:", lcg.lab.x = 0, lcg.lab.y = 0.7)
# Adding Gini coefficient and Lorenz curve for cars 2014