bootstrap.incidence {RDS} | R Documentation |
Calculates incidence and bootstrap confidence intervals for immunoassay data collected with RDS
Description
Calculates incidence and bootstrap confidence intervals for immunoassay data collected with RDS
Usage
bootstrap.incidence(
rds.data,
recent.variable,
hiv.variable,
N = NULL,
weight.type = c("Gile's SS", "RDS-I", "RDS-I (DS)", "RDS-II", "Arithmetic Mean", "HCG"),
mean.duration = 200,
frr = 0.01,
post.infection.cutoff = 730,
number.of.bootstrap.samples = 1000,
se.mean.duration = 0,
se.frr = 0,
confidence.level = 0.95,
verbose = TRUE,
...
)
Arguments
rds.data |
an rds.data.frame |
recent.variable |
The name of the variable indicating recent infection |
hiv.variable |
The name of the variable indicating of hiv infection |
N |
Population size |
weight.type |
A string giving the type of estimator to use. The options
are |
mean.duration |
Estimated mean duration of recent infection (MDRI) (days) |
frr |
Estimated false-recent rate (FRR) |
post.infection.cutoff |
Post-infection time cut-off T, separating "true-recent" from "false-recent" results (days) |
number.of.bootstrap.samples |
The number of bootstrap samples used to construct the interval. |
se.mean.duration |
The standard error of the mean.duration estimate |
se.frr |
The standard error of the false recency estimate |
confidence.level |
The level of confidence for the interval |
verbose |
verbosity control |
... |
additional arguments to compute.weights |
Details
The recent.variable and hiv should be the names of logical variables. Otherwise they are converted to logical using as.numeric(x) > 0.5.
This function estimates incidence using RDS sampling wieghts. Confidence intervals are constucted using HCG bootstraps. See http://www.incidence-estimation.org/ for additional information on (non-RDS) incidence estimation.
Examples
data(faux)
faux$hiv <- faux$X == "blue"
faux$recent <- NA
faux$recent[faux$hiv] <- runif(sum(faux$hiv)) < .2
faux$recent[runif(nrow(faux)) > .5] <- NA
faux$hiv[is.na(faux$recent)][c(1,6,10,21)] <- NA
attr(faux,"time") <- "wave"
bootstrap.incidence(faux,"recent","hiv",weight.type="RDS-II", number.of.bootstrap.samples=100)