RDS.SS.estimates {RDS} | R Documentation |
Gile's SS Estimates
Description
This function computes the sequential sampling (SS) estimates for a categorical variable or numeric variable.
Usage
RDS.SS.estimates(
rds.data,
outcome.variable,
N = NULL,
subset = NULL,
number.ss.samples.per.iteration = 500,
number.ss.iterations = 5,
control = control.rds.estimates(),
hajek = TRUE,
empir.lik = TRUE,
to.factor = FALSE
)
Arguments
rds.data |
An |
outcome.variable |
A string giving the name of the variable in the
|
N |
An estimate of the number of members of the population being
sampled. If |
subset |
An optional criterion to subset |
number.ss.samples.per.iteration |
The number of samples to take in
estimating the inclusion probabilites in each iteration of the sequential
sampling algorithm. If |
number.ss.iterations |
The number of iterations of the sequential sampling algorithm. If that is missing it defaults to 5. |
control |
A list of control parameters for algorithm
tuning. Constructed using |
hajek |
logical; Use the standard Hajek-type estimator of Gile (2011) or the standard Hortitz-Thompson. The default is TRUE. |
empir.lik |
If true, and outcome.variable is numeric, standard errors based on empirical likelihood will be given. |
to.factor |
force variable to be a factor |
Value
If outcome.variable
is numeric then the Gile SS estimate of the mean is returned, otherwise a vector of proportion estimates is returned.
If the empir.lik
is true, an object of class rds.interval.estimate
is returned. This is a list with components
estimate
: The numerical point estimate of proportion of thetrait.variable
.interval
: A matrix with six columns and one row per category oftrait.variable
:point estimate
: The HT estimate of the population mean.95% Lower Bound
: Lower 95% confidence bound.95% Upper Bound
: Upper 95% confidence bound.Design Effect
: The design effect of the RDS.s.e.
: Standard error.n
: Count of the number of sample values with that value of the trait.
Otherwise, an object of class rds.SS.estimate
is returned.
Author(s)
Krista J. Gile with help from Mark S. Handcock
References
Gile, Krista J. 2011 Improved Inference for Respondent-Driven Sampling Data with Application to HIV Prevalence Estimation, Journal of the American Statistical Association, 106, 135-146.
Gile, Krista J., Handcock, Mark S., 2010. Respondent-driven Sampling: An Assessment of Current Methodology, Sociological Methodology, 40, 285-327. <doi:10.1111/j.1467-9531.2010.01223.x>
Gile, Krista J., Beaudry, Isabelle S. and Handcock, Mark S., 2018 Methods for Inference from Respondent-Driven Sampling Data, Annual Review of Statistics and Its Application <doi:10.1146/annurev-statistics-031017-100704>. Gile, Krista J., Handcock, Mark S., 2011 Network Model-Assisted Inference from Respondent-Driven Sampling Data, ArXiv Preprint.
Salganik, M., Heckathorn, D. D., 2004. Sampling and estimation in hidden populations using respondent-driven sampling. Sociological Methodology 34, 193-239.
Volz, E., Heckathorn, D., 2008. Probability based estimation theory for Respondent Driven Sampling. The Journal of Official Statistics 24 (1), 79-97.
See Also
RDS.I.estimates
, RDS.II.estimates
Examples
data(fauxmadrona)
RDS.SS.estimates(rds.data=fauxmadrona,outcome.variable="disease",N=1000)