rotation {RConics} | R Documentation |
Affine planar transformations matrix
Description
(3 \times 3)
affine planar transformation matrix corresponding
to reflection, rotation, scaling and translation in projective geometry.
To transform a point p
multiply the transformation matrix A
with
the homogeneous coordinates (x,y,z)
of p
(e.g. p_{transformed} = Ap
).
Usage
rotation(theta, pt = NULL)
translation(v)
scaling(s)
reflection(alpha)
Arguments
theta |
the angle of the rotation (in radian). |
pt |
the homogeneous coordinates of the rotation center (optional). |
v |
the |
s |
the |
alpha |
the angle made by the line of reflection (in radian). |
Value
A (3 \times 3)
affine transformation matrix.
Source
Richter-Gebert, Jürgen (2011). Perspectives on Projective Geometry - A Guided Tour Through Real and Complex Geometry, Springer, Berlin, ISBN: 978-3-642-17285-4
Examples
p1 <- c(2,5,1) # homogeneous coordinate
# rotation
r_p1 <- rotation(4.5) %*% p1
# rotation centered in (3,1)
rt_p1 <- rotation(4.5, pt=c(3,1,1)) %*% p1
# translation
t_p1 <- translation(c(2,-4)) %*% p1
# scaling
s_p1 <- scaling(c(-3,1)) %*% p1
# plot
plot(t(p1),xlab="x",ylab="y", xlim=c(-5,5),ylim=c(-5,5),asp=1)
abline(v=0,h=0, col="grey",lty=1)
abline(v=3,h=1, col="grey",lty=3)
points(3,1,pch=4)
points(t(r_p1),col="red",pch=20)
points(t(rt_p1),col="blue",pch=20)
points(t(t_p1),col="green",pch=20)
points(t(s_p1),col="black",pch=20)
[Package RConics version 1.1.1 Index]