| SEstimator_wrapper {RCTrep} | R Documentation |
Estimating the weighted conditional average treatment effects in source.obj based on input objects source.obj and target.obj of class TEstimator.
Description
Estimating the weighted conditional average treatment effects in source.obj based on input objects source.obj and target.obj of class TEstimator.
Usage
SEstimator_wrapper(
Estimator,
target.obj,
source.obj,
selection_predictors,
method = "glm",
sampling_formula = NULL,
...
)
Arguments
Estimator |
a character specifying an estimator for weight. The allowed estimators are |
target.obj, source.obj |
an instantiated object of class |
selection_predictors |
a character vector specifying the names of variables in |
method |
an optional character specifying a model for estimating sampling probability when |
sampling_formula |
an object of class |
... |
an optional argument specifying training and tuning for a model of sampling probability. See https://topepo.github.io/caret/model-training-and-tuning.html for details. |
Value
An object of class SEstimator
Examples
source.data <- RCTrep::source.data
target.data <- RCTrep::target.data
vars_name <- list(outcome_predictors = c("x1","x2","x3","x4","x5","x6"),
treatment_name = c('z'),
outcome_name = c('y'))
target.obj <- TEstimator_wrapper(
Estimator = "Crude",
data = target.data,
vars_name = vars_name,
name = "RCT",
data.public = FALSE,
isTrial = TRUE)
source.obj <- TEstimator_wrapper(
Estimator = "G_computation",
data = source.data,
vars_name = vars_name,
outcome_method = "glm",
outcome_form=y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
name = "RWD",
data.public = TRUE)
source.rep.obj <- SEstimator_wrapper(Estimator="Exact",
target.obj=target.obj,
source.obj=source.obj,
selection_predictors=c("x2","x6"))
source.rep.obj$EstimateRep(stratification = c("x1","x3","x4","x5"),
stratification_joint = TRUE)