SEstimator_wrapper {RCTrep} | R Documentation |
Estimating the weighted conditional average treatment effects in source.obj
based on input objects source.obj
and target.obj
of class TEstimator
.
Description
Estimating the weighted conditional average treatment effects in source.obj
based on input objects source.obj
and target.obj
of class TEstimator
.
Usage
SEstimator_wrapper(
Estimator,
target.obj,
source.obj,
selection_predictors,
method = "glm",
sampling_formula = NULL,
...
)
Arguments
Estimator |
a character specifying an estimator for weight. The allowed estimators are |
target.obj , source.obj |
an instantiated object of class |
selection_predictors |
a character vector specifying the names of variables in |
method |
an optional character specifying a model for estimating sampling probability when |
sampling_formula |
an object of class |
... |
an optional argument specifying training and tuning for a model of sampling probability. See https://topepo.github.io/caret/model-training-and-tuning.html for details. |
Value
An object of class SEstimator
Examples
source.data <- RCTrep::source.data
target.data <- RCTrep::target.data
vars_name <- list(outcome_predictors = c("x1","x2","x3","x4","x5","x6"),
treatment_name = c('z'),
outcome_name = c('y'))
target.obj <- TEstimator_wrapper(
Estimator = "Crude",
data = target.data,
vars_name = vars_name,
name = "RCT",
data.public = FALSE,
isTrial = TRUE)
source.obj <- TEstimator_wrapper(
Estimator = "G_computation",
data = source.data,
vars_name = vars_name,
outcome_method = "glm",
outcome_form=y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
name = "RWD",
data.public = TRUE)
source.rep.obj <- SEstimator_wrapper(Estimator="Exact",
target.obj=target.obj,
source.obj=source.obj,
selection_predictors=c("x2","x6"))
source.rep.obj$EstimateRep(stratification = c("x1","x3","x4","x5"),
stratification_joint = TRUE)