estimate_factor_group {RCTS} | R Documentation |
Estimates group factors Fg.
Description
Estimates group factors Fg.
Usage
estimate_factor_group(
Y,
X,
beta_est,
g,
lambda,
comfactor,
factor_group,
S,
k,
kg,
robust,
method_estimate_beta = "individual",
method_estimate_factors = "macro",
initialise = FALSE,
verbose = FALSE
)
Arguments
Y |
Y: NxT dataframe with the panel data of interest |
X |
X: NxTxp array containing the observable variables |
beta_est |
estimated values of beta |
g |
Vector with group membership for all individuals |
lambda |
loadings of the estimated common factors |
comfactor |
estimated common factors |
factor_group |
estimated group specific factors |
S |
number of estimated groups |
k |
number of common factors to be estimated |
kg |
number of group specific factors to be estimated |
robust |
TRUE or FALSE: defines using the classical or robust algorithm to estimate beta |
method_estimate_beta |
defines how beta is estimated. Default case is an estimated beta for each individual. Default value is "individual." Possible values are "homogeneous", "group" or "individual". |
method_estimate_factors |
defines method of robust estimaton of the factors: "macro", "pertmm" or "cz" |
initialise |
indicator of being in the initialisation phase |
verbose |
when TRUE, it prints messages |
Value
Returns a list with an element for each estimated group. Each element of the list is a matrix with the group specific factors as rows.
Examples
#example with data generated with DGP 2
data <- create_data_dgp2(30, 10)
Y <- data[[1]]
X <- data[[2]]
g <- data[[3]] #true group membership
set.seed(1)
beta_est <- matrix(rnorm(4 * nrow(Y)), nrow = 4)
factor_group <- data[[5]] #true values of group specific factors
comfactor <- matrix(0, nrow = 1, ncol = ncol(Y))
lambda <- matrix(0, nrow = 1, ncol = nrow(Y))
estimate_factor_group(Y, X, beta_est, g, lambda, comfactor, factor_group,
3, 0, c(3, 3, 3), TRUE)