define_object_for_initial_clustering_macropca {RCTS} | R Documentation |
Defines the object that will be used to define a initial clustering.
Description
This is a short version of define_object_for_initial_clustering() which only contains implementations for robust macropca case and classical case.
Usage
define_object_for_initial_clustering_macropca(
Y,
k,
kg,
comfactor,
robust,
method_estimate_beta = "individual",
method_estimate_factors = "macro",
verbose = FALSE
)
Arguments
Y |
Y: NxT dataframe with the panel data of interest |
k |
number of common factors to be estimated |
kg |
number of group specific factors to be estimated |
comfactor |
estimated common factors |
robust |
TRUE or FALSE: defines using the classical or robust algorithm to estimate beta |
method_estimate_beta |
defines how beta is estimated. Default case is an estimated beta for each individual. Default value is "individual." Possible values are "homogeneous", "group" or "individual". |
method_estimate_factors |
specifies the robust algorithm to estimate factors: default is "macro". The value is not used when robust is set to FALSE. |
verbose |
when TRUE, it prints messages |
Value
matrix with N rows and 10 columns
[Package RCTS version 0.2.4 Index]