ML.BE3 {RBE3} | R Documentation |
Perform the parameter estimation for the Generalized beta distribution
Description
ML.BE3 computes the maximum likelihood estimates based on the maximum likelihood method.
Usage
ML.BE3(data, tau = 0.5, link.mu = "logit")
Arguments
data |
a list containing the response vector ( |
tau |
the quantile of the distribution to be modelled ( |
link.mu |
link function to be used for |
Details
Covariates are included as ,
and
, where
,
and
, where
and
are the dimensions of
and
, respectively.
Initial values for
are used as the coefficients for the linear regresion in
using the elements of
as regressors. Initial values for the other coefficients are considered as zeros.
Value
a list containing the following elements
estimate |
A matrix with the estimates |
logLik |
The maximum likelihood values attached by the estimates parameters |
Author(s)
Diego Gallardo and Marcelo Bourguignon.
References
Bourguignon, M., Gallardo, D.I., Saulo, H. (2023) A parametric quantile beta regression for modeling case fatality rates of COVID-19. Submitted.
Examples
##Simulating two covariates
set.seed(2100)
x1<-rnorm(200); x2<-rbinom(200, size=1, prob=0.5)
##Desing matrices: Z1 includes x1 and x2,
##Z2 includes only x1 and Z3 includes only x2
Z1=model.matrix(~x1+x2);Z2=model.matrix(~x1);Z3=model.matrix(~x2)
##Fixing parameters
theta=c(1, 0.2, -0.5); nu=c(0.5,-0.2); eta=c(-0.5, 0.3); tau=0.4
mu=plogis(Z1%*%theta); alpha=exp(Z2%*%nu); beta=exp(Z3%*%eta)
y=rBE3(200, mu, alpha, beta, tau=tau)
data=list(y=y, Z1=Z1, Z2=Z2, Z3=Z3)
ML.BE3(data, tau=tau)