BE3 {RBE3} | R Documentation |
The Generalized Beta Distribution
Description
Density, distribution function, quantile function and random generation for the generalized beta distribution.
Usage
dBE3(x, mu = 0.5, alpha = 1, beta = 1, tau = 0.5, log = FALSE)
pBE3(q, mu = 0.5, alpha = 1, beta = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
qBE3(p, mu = 0.5, alpha = 1, beta = 1, tau = 0.5)
rBE3(n, mu = 0.5, alpha = 1, beta = 1, tau = 0.5)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
mu |
vector of |
alpha , beta |
shape parameters of the distribution |
tau |
corresponding quantile of the distribution ( |
log , log.p |
logical; if TRUE, probabilities |
lower.tail |
logical; if TRUE (default), probabilities are |
Details
The probability density function for the generalized beta distribution is
f(y;\lambda,\alpha,\beta)=\frac{\lambda^\alpha y^{\alpha-1}(1-y)^{\beta-1}}{B(\alpha, \beta)[1-(1-\lambda)y]^{\alpha+\beta}}, \quad 0<y<1,
where \alpha, \beta>0
and \lambda>0
.
We consider the reparameterization in terms of the \tau
-quantile of the distribution, say 0<\mu<1
, taking
\lambda=\frac{(1-\mu)}{\mu}\frac{z_{\alpha,\beta}(\tau)}{[1-z_{\alpha,\beta}(\tau)]},
with z_{\alpha,\beta}(\tau)
denoting the \tau
-quantile of the usual beta distribution with shape parameters \alpha
and \beta
.
The cumulative distribution function is given by
F(y;\lambda,\alpha,\beta)=I_{\lambda x/(1+\lambda x -x)}(\alpha, \beta), \quad 0<y<1,
where I_x(\alpha,\beta)=B_x(\alpha,\beta)/B(\alpha,\beta)
is the incomplete beta funcion ratio, B_x(\alpha,\beta)=\int_0^x w^{\alpha-1}(1-w)^{\beta-1}dw
is the incomplete beta function and B(\alpha,\beta)=\Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha+\beta)
is the ordinary beta function.
The quantile of the distribution can be represented as
q(\tau;\lambda,\alpha,\beta)=\frac{z_{\alpha,\beta}(\tau)}{\lambda[1-z_{\alpha,\beta}(\tau)]+z_{\alpha,\beta}(\tau)}, \quad 0<\tau<1.
Random generation can be performed using the stochastic representation of the model. If X_1 \sim \mbox{Gamma}(\alpha,\theta_1)
and
X_2 \sim \mbox{Gamma}(\beta,\theta_2)
, then
\frac{X_1}{X_1+X_2}\sim GB3(\alpha,\beta,\lambda),
where \lambda=\theta_1/\theta_2.
Value
dBE3 gives the density, pBE3 gives the distribution function, qBE3 gives the quantile function, and rBE3 generates random deviates.
The length of the result is determined by n for rBE3, and is the maximum of the lengths of the numerical arguments for the other functions.
The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.
Author(s)
Diego Gallardo and Marcelo Bourguignon
References
Libby, D. L. and Novick, M. R. (1982). Multivariate generalized beta-distributions with applications to utility assessment. Journal of Educational Statistics, 7.
Examples
rBE3(20, mu=0.5, alpha=2, beta=1)
dBE3(c(0.4,0.7), mu=0.5, alpha=2, beta=1)
pBE3(c(0.4,0.7), mu=0.5, alpha=2, beta=1)