pmax_NIX {RARtrials} | R Documentation |
Posterior Probability that a Particular Arm is the Best for Continuous Endpoint with Unknown Variances
Description
Calculate posterior probability that a particular arm is the best in a trial using Bayesian response-adaptive randomization with
a control group (the Thall \&
Wathen method). The conjugate prior distributions follow Normal-Inverse-Chi-Squared (NIX)
distributions for continuous outcomes with unknown variance in each arm and can be specified individually.
Usage
pmax_NIX(
armn,
par1 = NULL,
par2 = NULL,
par3 = NULL,
par4 = NULL,
par5 = NULL,
side,
...
)
Arguments
armn |
number of arms in the trial with values up to 5. When |
par1 |
a vector of parameters including m, V, a, b for the arm with a Normal-Inverse-Chi-Squared prior to calculate the allocation probability of. |
par2 |
a vector of parameters including m, V, a, b for one of the remaining arms with a Normal-Inverse-Chi-Squared prior. |
par3 |
a vector of parameters including m, V, a, b for one of the remaining arms with a Normal-Inverse-Chi-Squared prior. |
par4 |
a vector of parameters including m, V, a, b for one of the remaining arms with a Normal-Inverse-Chi-Squared prior. |
par5 |
a vector of parameters including m, V, a, b for one of the remaining arms with a Normal-Inverse-Chi-Squared prior. |
side |
direction of a one-sided test, with values 'upper' or 'lower'. |
... |
additional arguments to be passed to |
Details
This function calculates the results of formula Pr(\mu_k=max\{\mu_1,...,\mu_k\})
for
side
equals to 'upper' and the results of formula Pr(\mu_k=min\{\mu_1,...,\mu_k\})
for
side
equals to 'lower'. This function returns the probability that the posterior probability of arm
k
is maximal or minimal in trials with up to five arms. Parameters used in a Normal-Inverse-Gamma
((\mu,\sigma^2) \sim NIG(mean=m,variance=V \times \sigma^2,shape=a,rate=b)
)
distribution should be converted to parameters equivalent in a Normal-Inverse-Chi-Squared
((\mu,\sigma^2) \sim NIX(mean=\mu,effective sample size=\kappa,degrees of freedom=\nu,variance=\sigma^2/\kappa)
)
distribution using convert_gamma_to_chisq
before applying this function.
Value
a probability that a particular arm is the best in trials up to five arms.
Examples
para<-list(V=1/2,a=0.8,m=9.1,b=1/2)
par<-convert_gamma_to_chisq(para)
set.seed(123451)
y1<-rnorm(100,9.1,1)
par11<-update_par_nichisq(y1, par)
set.seed(123452)
y2<-rnorm(90,9,1)
par22<-update_par_nichisq(y2, par)
set.seed(123453)
y3<-rnorm(110,8.92,1)
par33<-update_par_nichisq(y3, par)
y4<-rnorm(120,8.82,1)
par44<-update_par_nichisq(4, par)
pmax_NIX(armn=4,par1=par11,par2=par22,par3=par33,par4=par44,side='upper')
pmax_NIX(armn=4,par1=par11,par2=par22,par3=par33,par4=par44,side='lower')
para<-list(V=1/2,a=0.5,m=9.1/100,b=0.00002)
par<-convert_gamma_to_chisq(para)
set.seed(123451)
y1<-rnorm(100,0.091,0.009)
par11<-update_par_nichisq(y1, par)
set.seed(123452)
y2<-rnorm(90,0.09,0.009)
par22<-update_par_nichisq(y2, par)
set.seed(123453)
y3<-rnorm(110,0.0892,0.009)
par33<-update_par_nichisq(y3, par)
pmax_NIX(armn=3,par1=par11,par2=par22,par3=par33,side='upper')
pmax_NIX(armn=3,par1=par11,par2=par22,par3=par33,side='lower')