EMM2.cpp {RAINBOWR} | R Documentation |
Equation of mixed model for one kernel, EMMA-based method (inplemented by Rcpp)
Description
This function solves single-kernel linear mixed model by EMMA (efficient mixed model association; Kang et al., 2008) approach.
Usage
EMM2.cpp(
y,
X = NULL,
ZETA,
eigen.G = NULL,
eigen.SGS = NULL,
tol = NULL,
optimizer = "nlminb",
traceInside = 0,
REML = TRUE,
bounds = c(1e-09, 1e+09),
SE = FALSE,
return.Hinv = FALSE
)
Arguments
y |
A |
X |
A |
ZETA |
A list of variance (relationship) matrix (K; |
eigen.G |
A list with
The result of the eigen decompsition of |
eigen.SGS |
A list with
The result of the eigen decompsition of |
tol |
The tolerance for detecting linear dependencies in the columns of G = ZKZ'. Eigen vectors whose eigen values are less than "tol" argument will be omitted from results. If tol is NULL, top 'n' eigen values will be effective. |
optimizer |
The function used in the optimization process. We offer "optim", "optimx", and "nlminb" functions. |
traceInside |
Perform trace for the optimzation if traceInside >= 1, and this argument shows the frequency of reports. |
REML |
You can choose which method you will use, "REML" or "ML". If REML = TRUE, you will perform "REML", and if REML = FALSE, you will perform "ML". |
bounds |
Lower and Upper bounds of the parameter lambda. If the updated parameter goes out of this range, the parameter is reset to the value in this range. |
SE |
If TRUE, standard errors are calculated. |
return.Hinv |
If TRUE, the function returns the inverse of |
Value
- $Vu
Estimator for
\sigma^2_u
- $Ve
Estimator for
\sigma^2_e
- $beta
BLUE(
\beta
)- $u
BLUP(
u
)- $LL
Maximized log-likelihood (full or restricted, depending on method)
- $beta.SE
Standard error for
\beta
(If SE = TRUE)- $u.SE
Standard error for
u^*-u
(If SE = TRUE)- $Hinv
The inverse of
H = ZKZ' + \lambda I
(If return.Hinv = TRUE)
References
Kang, H.M. et al. (2008) Efficient Control of Population Structure in Model Organism Association Mapping. Genetics. 178(3): 1709-1723.