EM3.cpp {RAINBOWR} | R Documentation |
Equation of mixed model for multi-kernel (slow, general version)
Description
This function solves the following multi-kernel linear mixed effects model.
y = X \beta + \sum _{l=1} ^ {L} Z _ {l} u _ {l} + \epsilon
where Var[y] = \sum _{l=1} ^ {L} Z _ {l} K _ {l} Z _ {l}' \sigma _ {l} ^ 2 + I \sigma _ {e} ^ {2}
.
Usage
EM3.cpp(
y,
X0 = NULL,
ZETA,
eigen.G = NULL,
eigen.SGS = NULL,
tol = NULL,
n.core = NA,
optimizer = "nlminb",
traceInside = 0,
n.thres = 450,
REML = TRUE,
pred = TRUE,
return.u.always = TRUE,
return.u.each = TRUE,
return.Hinv = TRUE
)
Arguments
y |
A |
X0 |
A |
ZETA |
A list of variance matrices and its design matrices of random effects. You can use more than one kernel matrix. For example, ZETA = list(A = list(Z = Z.A, K = K.A), D = list(Z = Z.D, K = K.D)) (A for additive, D for dominance) Please set names of lists "Z" and "K"! |
eigen.G |
A list with
The result of the eigen decompsition of |
eigen.SGS |
A list with
The result of the eigen decompsition of |
tol |
The tolerance for detecting linear dependencies in the columns of G = ZKZ'. Eigen vectors whose eigen values are less than "tol" argument will be omitted from results. If tol is NULL, top 'n' eigen values will be effective. |
n.core |
Setting n.core > 1 will enable parallel execution on a machine with multiple cores. |
optimizer |
The function used in the optimization process. We offer "optim", "optimx", and "nlminb" functions. |
traceInside |
Perform trace for the optimzation if traceInside >= 1, and this argument shows the frequency of reports. |
n.thres |
If |
REML |
You can choose which method you will use, "REML" or "ML". If REML = TRUE, you will perform "REML", and if REML = FALSE, you will perform "ML". |
pred |
If TRUE, the fitting values of y is returned. |
return.u.always |
If TRUE, BLUP ('u'; |
return.u.each |
If TRUE, the function also computes each BLUP corresponding to different kernels (when solving multi-kernel mixed-effects model). It takes additional time compared to the one with 'return.u.each = FALSE'. |
return.Hinv |
If TRUE, |
Value
- $y.pred
The fitting values of y
y = X\beta + Zu
- $Vu
Estimator for
\sigma^2_u
, all of the genetic variance- $Ve
Estimator for
\sigma^2_e
- $beta
BLUE(
\beta
)- $u
BLUP(Sum of
Zu
)- $u.each
BLUP(Each
u
)- $weights
The proportion of each genetic variance (corresponding to each kernel of ZETA) to Vu
- $LL
Maximized log-likelihood (full or restricted, depending on method)
- $Vinv
The inverse of
V = Vu \times ZKZ' + Ve \times I
- $Hinv
The inverse of
H = ZKZ' + \lambda I
References
Kang, H.M. et al. (2008) Efficient Control of Population Structure in Model Organism Association Mapping. Genetics. 178(3): 1709-1723.
Zhou, X. and Stephens, M. (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 44(7): 821-824.
Examples
### Import RAINBOWR
require(RAINBOWR)
### Load example datasets
data("Rice_Zhao_etal")
Rice_geno_score <- Rice_Zhao_etal$genoScore
Rice_geno_map <- Rice_Zhao_etal$genoMap
Rice_pheno <- Rice_Zhao_etal$pheno
### View each dataset
See(Rice_geno_score)
See(Rice_geno_map)
See(Rice_pheno)
### Select one trait for example
trait.name <- "Flowering.time.at.Arkansas"
y <- as.matrix(Rice_pheno[, trait.name, drop = FALSE])
### Remove SNPs whose MAF <= 0.05
x.0 <- t(Rice_geno_score)
MAF.cut.res <- MAF.cut(x.0 = x.0, map.0 = Rice_geno_map)
x <- MAF.cut.res$x
map <- MAF.cut.res$map
### Estimate additive genomic relationship matrix (GRM) & epistatic relationship matrix
K.A <- calcGRM(genoMat = x)
K.AA <- K.A * K.A ### additive x additive epistatic effects
### Modify data
Z <- design.Z(pheno.labels = rownames(y),
geno.names = rownames(K.A)) ### design matrix for random effects
pheno.mat <- y[rownames(Z), , drop = FALSE]
ZETA <- list(A = list(Z = Z, K = K.A),
AA = list(Z = Z, K = K.AA))
### Solve multi-kernel linear mixed effects model (2 random efects)
EM3.res <- EM3.cpp(y = pheno.mat, X0 = NULL, ZETA = ZETA)
(Vu <- EM3.res$Vu) ### estimated genetic variance
(Ve <- EM3.res$Ve) ### estimated residual variance
(weights <- EM3.res$weights) ### estimated proportion of two genetic variances
(herit <- Vu * weights / (Vu + Ve)) ### genomic heritability (additive, additive x additive)
(beta <- EM3.res$beta) ### Here, this is an intercept.
u.each <- EM3.res$u.each ### estimated genotypic values (additive, additive x additive)
See(u.each)
### Perform genomic prediction with 10-fold cross validation (multi-kernel)
noNA <- !is.na(c(pheno.mat)) ### NA (missing) in the phenotype data
phenoNoNA <- pheno.mat[noNA, , drop = FALSE] ### remove NA
ZETANoNA <- ZETA
ZETANoNA <- lapply(X = ZETANoNA, FUN = function (List) {
List$Z <- List$Z[noNA, ]
return(List)
}) ### remove NA
nFold <- 10 ### # of folds
nLine <- nrow(phenoNoNA)
idCV <- sample(1:nLine %% nFold) ### assign random ids for cross-validation
idCV[idCV == 0] <- nFold
yPred <- rep(NA, nLine)
for (noCV in 1:nFold) {
print(paste0("Fold: ", noCV))
yTrain <- phenoNoNA
yTrain[idCV == noCV, ] <- NA ### prepare test data
EM3.resCV <- EM3.cpp(y = yTrain, X0 = NULL, ZETA = ZETANoNA) ### prediction
yTest <- EM3.resCV$y.pred ### predicted values
yPred[idCV == noCV] <- yTest[idCV == noCV]
}
### Plot the results
plotRange <- range(phenoNoNA, yPred)
plot(x = phenoNoNA, y = yPred,xlim = plotRange, ylim = plotRange,
xlab = "Observed values", ylab = "Predicted values",
main = "Results of Genomic Prediction (multi-kernel)",
cex.lab = 1.5, cex.main = 1.5, cex.axis = 1.3)
abline(a = 0, b = 1, col = 2, lwd = 2, lty = 2)
R2 <- cor(x = phenoNoNA[, 1], y = yPred) ^ 2
text(x = plotRange[2] - 10,
y = plotRange[1] + 10,
paste0("R2 = ", round(R2, 3)),
cex = 1.5)